Investigadores de la Universidad Politécnica de Madrid han desvelado el orden subyacente al caos observado en los llamados filamentos de luz, larguísimos e intensísimos hilos de luz láser y materia ionizada, cuyo conocimiento permitirá ampliar sus aplicaciones tecnológicas. En contra de la tendencia natural de la luz a esparcirse en todas direcciones, un haz de luz láser de potencia suficiente (por encima de varios gigavatios) se estrecha o auto-focaliza a medida que se propaga hasta casi colapsar en un punto. La altísima concentración de energía alrededor de ese punto consigue ionizar el aire y a partir de ahí emerge un filamento de luz, de unas pocas micras de diámetro, en el que el haz de luz y el canal de plasma que genera avanzan juntos, atrapados mutuamente. En su avance, el haz de luz y el canal de plasma interaccionan en un equilibrio altamente dinámico y no lineal a lo largo de distancias que pueden superar decenas de kilómetros, hasta que la energía electromagnética que ioniza el aire se consume. Lo que parece a simple vista un intenso hilo de luz presenta en realidad un comportamiento muy complejo. Si la potencia del láser es suficientemente alta se pueden formar varios hilos en posiciones aleatorias que avanzan en paralelo. Cuando solo hay uno, a veces parece un hilo continuo y otras veces parece aparecer y desaparecer intermitentemente a lo largo de su camino. En su avance, puede aparecer y desaparecer de un modo periódico o de un modo desordenado e impredecible, dependiendo de las condiciones precisas de su generación. Comprender el comportamiento de los filamentos es fundamental para optimizar sus aplicaciones. Hoy en día se utilizan rutinariamente para cortar con gran precisión y para grabar micro y nanoestructuras en el volumen de sólidos, por ejemplo guías para otras ondas luminosas. Además, se ha demostrado que estos filamentos de luz pueden desencadenar y canalizar descargas eléctricas en tormentas, controlando así el momento y lugar en que los rayos se producen. Se utilizan asimismo como sensores remotos de componentes y contaminantes atmosféricos, por ejemplo, aerosoles u ozono. Con este trabajo, los investigadores han conseguido explicar los diferentes comportamientos de los filamentos de un modo unificado. El equilibrio dinámico que tiene lugar en el filamento de luz ocurre alrededor de un atractor, que los investigadores han identificado con un haz de Bessel no lineal. El comportamiento ordenado o desordenado del filamento depende de las propiedades de este atractor. Cuando es un atractor caótico, como el atractor con forma de mariposa de Lorenz, el filamento muestra la intermitencia desordenada a lo largo de su camino y cualquier fluctuación en las condiciones de generación -como fluctuaciones de la potencia del láser- hace imposible predecir donde aparecerá o desaparecerá. Esta nueva comprensión del fenómeno desde la perspectiva de los sistemas complejos y la teoría del caos fomentará nuevas investigaciones para mejorar el control de los filamentos de luz y sus aplicaciones.
Te puede interesar
Yahoo desarrolla un motor de predicción política
Científicos de Yahoo están utilizando los mercados de predicción, junto con las encuestas, el análisis de los sentimientos en Twitter y las tendencias en las consultas de búsqueda, para crear un motor de predicción...
Vebor, un nuevo lenguaje visual con estructura científica
Ángel Alonso, catedrático de Ingeniería de Sistemas y Automática de la Universidad de León, plantea la creación de , un nuevo lenguaje visual con estructura científica. El jueves pasado, Alonso, que ha sido director de...
Wilson y Dawkins hablan sobre el Big Bang y la vida extraterrestre en la primera jornada del Festival Starmus
El hotel The Ritz-Carlton, Abama, en Guía de Isora (Tenerife), acogió ayer la inauguración de la segunda edición del Festival Starmus, que dirige el astrónomo del Instituto Astrofísico de Canarias (IAC), Garik Israelian...