Tendencias21

Científicos del CERN consiguen una nueva medida de la masa de antimateria

Investigadores del CERN han conseguido una nueva medida de precisión de la masa de antimateria. El resultado se basa en medidas espectroscópicas realizadas sobre unos 2.000 millones de átomos de helio antiprotónico enfriados hasta temperaturas extremas de 1,5 a 1,7 grados por encima del cero absoluto. La medida de la frecuencia de transición se ha mejorado en un factor 1,4 a 10 comparada con experimentos anteriores.

Científicos del CERN consiguen una nueva medida de la masa de antimateria

En un artículo publicado en la revista Science, el experimento ASACUSA del laboratorio europeo de física de partículas (CERN) informa de una nueva medida de precisión de la masa del antiprotón en relación con la del electrón.

El resultado se basa en medidas espectroscópicas realizadas sobre unos 2.000 millones de átomos de helio antiprotónico enfriados hasta temperaturas extremas de 1,5 a 1,7 grados por encima del cero absoluto.

En estos átomos, un antiprotón se sitúa en el lugar de uno de los electrones que normalmente orbita el núcleo. Este tipo de medidas proporciona una herramienta única para comparar la masa de la partícula de antimateria con su contraparte de materia con alta precisión. Ambas deben ser idénticas.

Las partículas de materia y antimateria son siempre producidas como un par en las colisiones de partículas. Partículas y antipartículas tienen la misma masa y carga eléctrica opuesta. El positrón, que tiene carga positiva, es un anti-electrón, la antipartícula del electrón que tiene carga negativa.

Los positrones se observaron ya en los años 30, tanto en colisiones naturales provocadas por rayos cósmicos como en los aceleradores de partículas. Hoy día se usan en los dispositivos de imagen PET de los hospitales.

Sin embargo, estudiar estas partículas con gran precisión sigue siendo un reto porque cuando la materia y la antimateria se unen, ambas se aniquilan desapareciendo en un destello de energía.

Nuevo enfoque

El Decelerador Antiprotón del CERN es una instalación única que proporciona haces de antiprotones de baja energía a los experimentos para el estudio de la antimateria. Para realizar medidas con estos antiprotones, los experimentos los atrapan durante largos periodos usando instrumentos magnéticos.

ASACUSA utiliza un enfoque distinto, puesto que el experimento puede crear átomos ‘híbridos’ hechos de una mezcla de materia y antimateria: son los átomos de helio antiprotónico, formados por un antiprotón y un electrón que orbita el núcleo.

Se forman mezclando antiprotones con gas helio. En esta mezcla, alrededor del 3% de los antiprotones está en órbita alrededor del núcleo de helio y se encuentra protegido por la nube de electrones que rodea todo el átomo, lo que hace del helio antiprotónico lo suficientemente estable para realizar medidas de precisión.

La medida de la masa del antiprotón se realizó mediante espectroscopía, haciendo brillar un láser en el helio antiprotónico. Al ajustar el láser a la frecuencia adecuada, los antiprotones realizan un ‘salto cuántico’ dentro de los átomos. A partir de esta frecuencia, se puede calcular la masa relativa del antiprotón respecto de la del electrón. La colaboración ASACUSA ha usado previamente este método para medir con gran precisión la masa del antiprotón. Sin embargo, el movimiento microscópico de los átomos de helio antiprotónico introducía una fuente importante de imprecisión en las medidas previas.

El avance más importante de la colaboración, del que se informa en Science, es que el experimento ASACUSA ha logrado ahora enfriar los átomos de helio antiprotónico a temperaturas cercanas al cero absoluto suspendiéndoles en un gas inerte de helio muy frío.

De esta forma, el movimiento microscópico de los átomos se reduce, permitiendo la precisión de la medida de la frecuencia. La medida de la frecuencia de transición se ha mejorado en un factor 1,4 a 10 comparada con experimentos anteriores. Las pruebas se realizaron de 2010 a 2014 con unos 2.000 millones de átomos, lo que se corresponde con apenas 17 femtogramos de helio antiprotónico.

Misma masa

De acuerdo con las teorías vigentes, protones y antiprotones deben tener exactamente la misma masa. Hasta ahora no se han encontrado diferencias entre ambas, pero mejorar los límites de la precisión de esta comparación es muy importante para comprobar principios teóricos clave como la simetría CPT, que se cree debe ser la misma para todos los fenómenos físicos.

Una mínima ruptura de esta simetría podría proporcionar una evidencia de por qué la antimateria formada tras el Big Bang parece haber desaparecido.
 
La colaboración ASACUSA confía en ser capaz de mejorar aún más la precisión de la masa del antiprotón usando dos haces láser. En el futuro próximo, el comienzo de la instalación ELENA en el CERN permitirá también mejorar la precisión de este tipo de medidas.
 

Referencia

Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to–electron mass ratio. Masaki Hori et alia. Science  04 Nov 2016: Vol. 354, Issue 6312, pp. 610-614. DOI: 10.1126/science.aaf6702
 

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren cómo Plutón consiguió su corazón 16 abril, 2024
    El misterio de cómo Plutón consiguió una característica gigante en forma de corazón en su superficie finalmente ha sido resuelto: los científicos lograron reproducir con éxito la forma inusual con simulaciones numéricas, atribuyéndola a un impacto gigante y lento en ángulo oblicuo. Se trató de una colisión con un cuerpo planetario de unos 700 kilómetros […]
    Pablo Javier Piacente
  • La vida podría existir desde los inicios del Universo 16 abril, 2024
    El físico Avi Loeb sostiene en un reciente artículo que los elementos para el desarrollo de la vida tal como la conocemos podrían estar presentes en el cosmos desde la formación de las primeras estrellas, unos 100 millones de años después del Big Bang. También postula que esta hipótesis podría comprobarse si la misión Dragonfly […]
    Pablo Javier Piacente
  • Crean un acelerador de partículas en miniatura con aplicaciones médicas 16 abril, 2024
    Investigadores alemanes han desarrollado un acelerador de electrones que mide poco menos de medio milímetro de largo y 0,2 micrómetros de ancho, es decir, menos de una milésima de milímetro. Tiene aplicaciones en la investigación básica y permitirá crear nuevas herramientas de radioterapia. Entrevista con sus protagonistas, Peter Hommelhoff y Stefanie Kraus.
    Oscar William Murzewitz (Welt der Physik)/T21
  • Revelan la primera molécula fractal en la naturaleza 15 abril, 2024
    Los científicos han descubierto una molécula en la naturaleza que sigue un patrón geométrico de autosimilitud, conocido como fractal. La enzima microbiana denominada citrato sintasa es la primera estructura fractal molecular ensamblada directamente en la naturaleza que ha logrado identificarse hasta el momento. Los especialistas creen que este fractal puede representar un accidente evolutivo.
    Pablo Javier Piacente
  • El cambio climático podría estar relacionado con el aumento de los accidentes cerebrovasculares 15 abril, 2024
    Una nueva investigación ha demostrado que el número de muertes ligadas a accidentes cerebrovasculares y otras patologías relacionadas ha ido creciendo desde 1990, a la par del aumento de las temperaturas extremas. Durante 2019, el último año analizado, más de 500.000 muertes por accidentes cerebrovasculares se vincularon con temperaturas "no óptimas", provocadas por el calentamiento […]
    Pablo Javier Piacente
  • La globalización está fracturando a la humanidad 15 abril, 2024
    La globalización no está conduciendo a una civilización universal con valores compartidos, sino que está creando una brecha creciente entre los países occidentales de altos ingresos y el resto del mundo, en cuanto a valores como la tolerancia, la diversidad y la libertad.
    Eduardo Martínez de la Fe
  • En el caso de los caracoles, el huevo fue lo primero 14 abril, 2024
    Un caracol marino que primero fue ovíparo y evolucionó hacia la viviparidad revela que los saltos evolutivos ocurren gradualmente, a través de una serie de pequeños cambios.
    Redacción T21
  • Revelan el misterio del árbol tropical que camina 13 abril, 2024
    La denominada "palma caminante" o Socratea exorrhiza es un árbol de América Central y del Sur que según distintas versiones podría "caminar" y erguirse en determinadas situaciones: ahora, este mito parece haber sido resuelto bajo criterios científicos. Según los investigadores, aunque el árbol puede crecer rápidamente y crear nuevas raíces para lidiar con la pérdida […]
    Pablo Javier Piacente
  • Descubren 50 especies desconocidas para la ciencia en la exótica Isla de Pascua 12 abril, 2024
    Una expedición a la Cordillera de Salas y Gómez, frente a Rapa Nui, en el Océano Pacífico, documentó 160 especies animales que no se sabía que habitaban esta región de la misteriosa Isla de Pascua, en Chile. Además, descubrieron 50 criaturas que son absolutamente nuevas para la ciencia.
    Pablo Javier Piacente
  • El clima espacial podría generar un caos satelital sin precedentes 12 abril, 2024
    Los satélites en órbita terrestre baja (LEO) pueden perder su brújula cuando el clima espacial ofrece situaciones inesperadas. El problema afecta a la Estación Espacial Internacional, la estación espacial Tiangong de China y muchos satélites de observación de la Tierra. Los expertos sostienen que esta incertidumbre de posicionamiento aumenta el riesgo de colisiones orbitales peligrosas, […]
    Pablo Javier Piacente