Tendencias21
Consiguen emular el mecanismo cuántico de la fotosíntesis

Consiguen emular el mecanismo cuántico de la fotosíntesis

Investigadores de la Universidad de Chicago han creado un compuesto sintético que reproduce el proceso cuántico que hace posible la enorme eficacia energética de la fotosíntesis: la superposición cuántica. Los resultados obtenidos podrían ayudar a desarrollar tecnologías altamente eficientes para el aprovechamiento de la energía solar. Por Yaiza Martínez.

Consiguen emular el mecanismo cuántico de la fotosíntesis

Investigadores de la Universidad de Chicago, en Estados Unidos, han creado un compuesto sintético capaz de imitar la dinámica cuántica presente en un proceso biológico tan complejos como la fotosíntesis.

Este novedoso método podría ayudar a mejorar las tecnologías para el aprovechamiento de energía solar, publica dicha Universidad en un comunicado emitido vía Newswise.

Los sistemas biológicos explotan fenómenos mecánicos cuánticos, que son los que suceden a nivel subatómico, para lograr ciertos fines. Por ejemplo, algunos fenómenos cuánticos posibilitan un proceso llamado fotosíntesis que resulta esencial para la vida y que consiste en la transformación de la energía solar para su aplicación en la conversión de materia inorgánica en materia orgánica.

En este proceso, las llamadas antenas fotosintéticas –proteínas que organizan la clorofila y otras moléculas que absorben la luz en plantas y bacterias– son capaces de mover energía con una eficiencia extrema. Pero, ¿cómo lo hacen?, se preguntaban los científicos.

Para descubrirlo, han desarrollado efectos cuánticos en dispositivos sintéticos captadores de luz. Según ellos mismos han señalado en la revista Science, este proceso de ingeniería cuántica no solo fue posible, sino que además resultó más sencillo de lo que cabría esperar.

De lo natural a lo artificial

Los científicos diseñaron en concreto pequeñas moléculas capaces de mantener coherencias cuánticas de “larga” duración. Las coherencias cuánticas son una huella observable, a escala macroscópica, de la superposición cuántica, que se da en el mundo microscópico cuando un objeto cuántico posee simultáneamente dos o más valores de una cantidad observable, como su posición o su energía.

Para entender esta superposición acudiremos al famoso experimento mental del gato de Schrödinger: un gato, junto con un matraz que contiene un veneno y una fuente radiactiva, se coloca en una caja sellada. Si un contador Geiger detecta la radiación, el frasco se rompe, liberando el veneno que mata al gato. De lo contrario, el gato seguirá vivo. La interpretación de la mecánica cuántica implica que, después de un tiempo, el gato está al mismo tiempo vivo y muerto. Como este gato (muerto y vivo a la vez), funcionarían las partículas subatómicas en un estado de superposición cuántica.

Aunque, en general, los efectos cuánticos son insignificantes para los sistemas macroscópicos, experimentos realizados en el laboratorio de química de la Universidad de Chicago por Greg Engel con una técnica que permite estudiar procesos dinámicos que transcurren en tiempos generalmente muy cortos, demostraron que las superposiciones cuánticas sí juegan un papel clave en la casi perfecta eficiencia cuántica de captación de luz de la fotosíntesis.

En este proceso, las antenas fotosintéticas antes mencionadas se encargan de mantener las superposiciones cuánticas, a veces durante periodos anómalamente largos.

Los organismos han desarrollado la manera de mantener dichas superposiciones cuánticas, con lo que han mejorado la eficiencia de la transferencia de energía absorbida de la luz solar, en aquellas regiones celulares en las que esta energía es transformada en energía química.

Los resultados alcanzados en la Universidad de Chicago han revelado ahora que este particular sistema de mecánica cuántica puede ser trasladado a compuestos fabricados por el ser humano.

Superposición cuántica y eficiencia energética

¿Pero cómo? Para conseguirlo, los científicos modificaron moléculas de una sustancia colorante orgánica hidrosoluble llamada fluoresceína, y las conectaron por pares usando una estructura rígida.

Las macromoléculas resultantes fueron capaces de recrear propiedades clave de las moléculas de clorofila presentes en los sistemas fotosintéticos. Estas moléculas son las que hacen que las coherencias cuánticas persistan durante decenas de femtosegundos a temperatura ambiente.

«Puede parecer poco tiempo – un femtosegundo equivale a la milbillonésima parte de un segundo-, sin embargo, el movimiento de las excitaciones en estos sistemas (biológicos) también se produce a esta escala de tiempo ultrarrápida, lo que significa que dichas superposiciones cuánticas pueden jugar un papel importante en la transferencia de energía”, explica el co-autor del estudio, Dugan Hayes.

En el terreno biológico, simulaciones informáticas han demostrado de hecho que las coherencias cuánticas acaecidas en las antenas fotosintéticas evitan que las excitaciones energéticas queden atrapadas en su camino hacia el centro de reacción, donde se inicia su conversión en energía química.

Una interpretación de este hecho señala que, a medida que la excitación energética se traslada a través de la antena, se mantiene en una superposición cuántica de todas las vías posibles a la vez, de manera que sea inevitable que la energía acceda a la vía adecuada. De ahí la eficiencia energética de vegetales y bacterias en la fotosíntesis.

La película del avance

Para determinar si las superposiciones cuánticas de “larga” duración del compuesto artificial era similar a la de los sistemas biológicos, los investigadores “rodaron” una película del flujo de energía de las moléculas de fluoresceína, usando sistemas láser de femtosegundos.

Tres pulsos de láser controlados con precisión fueron dirigidos hacia la muestra, provocando que esta emitiese una señal óptica que fue capturada y enviada a una cámara.

El resultado fue codificado como una serie bidimensional de espectros, en la que cada espectro bidimensional constituye un fotograma de la película y contiene información sobre donde reside la energía en el sistema y qué vías ha seguido para llegar allí.

Las películas muestran la relajación de estados de alta energía hacia estados de energía más bajos a medida que avanza el tiempo, así como oscilaciones energéticas en regiones muy específicas que representarían “las huellas de la coherencia cuántica que surge de la interferencia entre diferentes estados energéticos en la superposición cuántica», explica Hayes.

El investigador concluye que la observación de estas coherencias en sistemas sintéticos demuestra que un fenómeno cuántico tan complejo como la superposición cuántica de la fotosíntesis puede ser recreado de manera artificial.

Consiguen emular el mecanismo cuántico de la fotosíntesis

Primer hallazgo del vínculo entre cuántica y fotosíntesis

En 2007, por primera vez en la historia, se observó, gracias a una técnica llamada espectroscopia electrónica de dos dimensiones, que el secreto de la eficiencia del proceso de la fotosíntesis se hallaba en un mecanismo cuántico.

Fue entonces cuando Greg Engel y un equipo de investigadores del Departamento de Energía del Lawrence Berkeley National Laboratory y de la Universidad de California en Berkeley (Estados Unidos) revelaron que los secretos del funcionamiento de la fotosíntesis y de su alto rendimiento subyacen en el nivel cuántico de la materia, es decir, en los efectos mecánicos de las partículas subatómicas.

En concreto, se constató que la coherencia cuántica electrónica ondulatoria juega un importante papel en el proceso de transferencia energética que supone la fotosíntesis porque capacita al sistema para probar simultáneamente todos los “caminos” o posibles vías de energía potencial antes de elegir el más eficiente de ellos, como también han demostrado los investigadores de la Universidad de Chicago.

En 2007, los investigadores de Berkeley señalaron que la tecnología natural de la fotosíntesis para transferir energía de un sistema molecular a otro podría llegar a reproducirse artificialmente. Esta imitación posibilitaría el aprovechamiento de la luz del sol como fuente energética eficiente, sostenible y no contaminante. El avance de los científicos de la Universidad de Chicago podría suponer un paso adelante en esta dirección.

Referencias bibliográficas:

Gregory S. Engel, Tessa R. Calhoun, Elizabeth L. Read, Tae-Kyu Ahn, Tomá Manal, Yuan-Chung Cheng, Robert E. Blankenship y Graham R. Fleming. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature (2007). DOI: 10.1038/nature05678.

D. Hayes, G. B. Griffin, G. S. Engel. Engineering Coherence Among Excited States in Synthetic Heterodimer Systems. Science (2013). DOI:10.1126/science.1233828.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Ya es posible transmitir el tacto a través de Internet 26 junio, 2024
    Un nuevo estándar para la compresión y transmisión del sentido del tacto mediante Internet sienta las bases para la telecirugía, la teleconducción y nuevas experiencias de juego en línea, entre otras aplicaciones. El flamante estándar HCTI (Haptic Codecs for the Tactile Internet) es para el “tacto digital” lo que son JPEG, MP3 y MPEG para […]
    Pablo Javier Piacente
  • Las primeras muestras de la cara oculta de la Luna ya están en la Tierra 26 junio, 2024
    La cápsula de reingreso de la sonda Chang'e-6 de China, que transporta hasta dos kilogramos de materiales extraídos y perforados de la cuenca más antigua de la Luna ubicada en su lado oscuro, aterrizó este martes 25 de junio en la región de Mongolia Interior y fue rápidamente recuperada, según informó la Administración Nacional del […]
    Pablo Javier Piacente
  • La Tierra tendrá dos soles dentro de 1,3 millones de años y durante 60.000 años 26 junio, 2024
    Dentro de 1,3 millones de años, la Tierra tendrá una especie de segundo sol porque la estrella Gliese 710 se acercará a 1,1 años luz de la Tierra y la veríamos del mismo tamaño que Júpiter. Lo malo es que esa alteración cósmica puede provocar un episodio en nuestro planeta como el que acabó con […]
    Eduardo Martínez de la Fe
  • China descubre grafeno natural en la Luna 25 junio, 2024
    Investigadores chinos han descubierto recientemente grafeno natural de escasas capas por primera vez en la Luna, a partir de las muestras traídas a la Tierra por la sonda Chang'e 5. El hallazgo proporciona nuevos conocimientos sobre las actividades geológicas, la historia evolutiva y las características ambientales de la Luna.
    Pablo Javier Piacente
  • Los incendios forestales extremos se duplicaron en los últimos 20 años en todo el planeta 25 junio, 2024
    Una nueva investigación concluye que la frecuencia e intensidad de los incendios forestales extremos se ha más que duplicado en todo el mundo en las últimas dos décadas, debido al calentamiento global antropogénico y otros factores relacionados. Se trata de la primera ocasión en la cual los científicos pudieron trazar una tendencia global para los […]
    Pablo Javier Piacente
  • Detectado en el Mediterráneo el neutrino más energético del universo 25 junio, 2024
    El neutrino más potente jamás observado ha dejado su huella en las profundidades del Mediterráneo, aunque todavía se desconoce de qué rincón del universo procede. Los neutrinos cosmogénicos son los mensajeros de algunos de los eventos más cataclísmicos del cosmos.
    Eduardo Martínez de la Fe
  • La IA identifica seis formas diferentes de depresión 24 junio, 2024
    Los científicos han identificado seis formas biológicamente distintas de depresión gracias a la aplicación de la Inteligencia Artificial (IA) en estudios cerebrales. El hallazgo podría explicar por qué algunas personas no responden a los tratamientos tradicionales para la afección, como los antidepresivos y la terapia psicológica.
    Pablo Javier Piacente
  • La NASA pondrá en órbita una estrella artificial que revolucionará el estudio del Universo 24 junio, 2024
    La NASA encarará un ambicioso proyecto para colocar en órbita una estrella artificial: permitirá la calibración de telescopios a niveles previamente inalcanzables. El proyecto tiene como objetivo mejorar significativamente las mediciones de la luminosidad estelar y abordar varios otros desafíos que dificultan la astrofísica moderna.
    Pablo Javier Piacente
  • Los macacos nos enseñan cómo sobrevivir a un desastre natural 24 junio, 2024
    Los macacos de la isla caribeña de Puerto Rico se volvieron más tolerantes y menos agresivos después del huracán María, que los obligó a compartir la sombra de los árboles para sobrevivir al intenso calor.
    Redacción T21
  • Extrañas formas de vida se ocultan en antiguas cuevas de lava de Hawai 23 junio, 2024
    Científicos estadounidenses han logrado identificar una gran diversidad de especies microbianas únicas, que se han desarrollado en cuevas geotérmicas, tubos de lava y fumarolas volcánicas de la isla de Hawái. Estas estructuras subterráneas se formaron hace entre 65 y 800 años y reciben poca o ninguna luz solar, en ambientes similares a los que pueden encontrarse […]
    Pablo Javier Piacente