Tendencias21
Consiguen observar un combate cuántico

Consiguen observar un combate cuántico

Cuando los órdenes cuánticos varían, se producen dinámicas opuestas en los sistemas de las partículas subatómicas, que pujan por “vencer”. La observación de estos combates ha sido ahora posible gracias a una colaboración entre físicos teóricos y experimentales de diversos centros de Alemania y España. Usando un simulador cuántico – que reproduce el comportamiento de las partículas- y reduciendo los errores comunes en este tipo de mediciones con destreza, los científicos lograron investigar una transición de fase novedosa que hasta hoy no se había podido observar.

Consiguen observar un combate cuántico Una colaboración entre físicos cuánticos de Innsbruck (Austria) y de Madrid se ha adentrado en el fascinante mundo de las transiciones de fase cuánticas. Se trata de los primeros científicos que consiguen simular la competencia entre dinámicas opuestas en un nuevo tipo de transición entre dos órdenes cuánticos. Los resultados de estos experimentos han sido publicados en la prestigiosa revista Nature Physics.

“Si ponemos agua a hervir, se evaporan moléculas en forma de vapor de agua. Tal cambio del orden físico de la materia lo llamamos una transición de fase”, explica Markus Müller del Departamento de Física Teórica de la Facultad de Ciencias Físicas de la Universidad Complutense de Madrid (UCM), en declaraciones recogidas por Alphagalileo.

En una colaboración entre Müller y sus colegas teóricos Sebastian Diehl y Peter Zoller, del Instituto de Física Teórica, y sus colaboradores del Instituto de Física Experimental del grupo de Rainer Blatt en la Universidad de Innsbruck, en Austria, este equipo de científicos ha investigado una transición de fase novedosa que hasta hoy no se había podido observar.

Para conseguirlo, los físicos cuánticos usaron un nuevo instrumento que actualmente constituye uno de los más prometedores desarrollos de la física cuántica: un simulador cuántico‎. Este aparato funciona de una manera similar a un ordenador cuántico y permite simular fenómenos físicos que por su complejidad no admiten un tratamiento usando ordenadores clásicos.

“Las propiedades de un simulador cuántico nos abren la puerta al estudio en laboratorio de fenómenos cuánticos en sistemas que compuestos por muchas partículas y acoplados a un entorno”, comentan los físicos experimentales Philipp Schindler y Thomas Monz.

Observando la competición entre procesos

Utilizando unos pocos iones atrapados en una cámara de vacío, los científicos son capaces de simular la física compleja de transiciones de fase cuánticas. Ello requiere un nivel de control y una precisión en las manipulaciones experimentales muy elevados, de los cuales dispone el equipo de Rainer Blatt al tratarse de uno de los grupos experimentales punteros a nivel mundial en el campo.

“En este proyecto hemos construido un simulador cuántico que podemos programar a voluntad y que se basa en una cadena de cuatro o cinco iones atrapados”, explica Philipp Schindler. Una de las partículas sirve para introducir de forma controlada perturbaciones en el sistema, mientras los otros iones se usan para realizar el cálculo cuántico.

“Lo llamamos un simulador cuántico abierto. Mientras normalmente se intenta suprimir al máximo el efecto de perturbaciones indeseadas que estropean los efectos cuánticos frágiles, aquí explotamos esas perturbaciones para crear orden en un sistema cuántico”, dice Schindler.

“De esta manera conseguimos crear, mediante unas secuencias de operaciones, correlaciones cuánticas entre las partículas que salvan grandes distancias”. Este nuevo estado cuántico está caracterizado por su orden cuántico espacial y no tiene equivalente en nuestro mundo clásico. Se trata de la primera vez que este estado cuántico se ha podido crear y observar mediante estas perturbaciones hechas a medida.

En un siguiente paso, los investigadores interrumpieron periódicamente esa dinámica introduciendo otro tipo de dinámica diferente. “Como consecuencia, se interrumpe el efecto de la dinámica que crea el orden cuántico”, explican los físicos teóricos Sebastian Diehl y Markus Müller, “y eso nos permite observar la competencia entre los dos procesos incompatibles y estudiar en detalle lo que ocurre exactamente en la transición entre los dos tipos de orden”. Reduciendo errores

El experimento requiere de una precisión inmensa, lo cual hace indispensable que se corrijan posibles errores de cálculo cuánticos de forma inmediata, para poder simular los procesos físicos correctamente.

Una corrección de errores completa y universal – tal como se está desarrollando para ordenadores cuánticos en este momento – exige un esfuerzo técnico enorme. Debido a esta dificultad, los físicos de Innsbruck y Madrid optaron por seguir un camino alternativo y prometedor: identificaron las fuentes de errores dominantes durante la simulación y tomaron medidas específicas para reducir dichos errores.

“Esta estrategia de reducir el efecto de los errores servirá de modelo para futuros experimentos”, está convencido Philipp Schindler. “La corrección de errores cuánticos general sigue siendo un objetivo a largo plazo. No obstante, estos métodos alternativos podrían permitir realizar simulaciones cuánticas fiables de sistemas cuánticos grandes en un futuro más cercano”, añade Markus Müller.

Colaboración entre teoría y experimentación

Adquirir estos conocimientos profundos de la naturaleza de transiciones de fase cuánticas representa un avance científico único. Fue posible sólo gracias a la combinación de un nivel experimental enormemente avanzado y una investigación teórica de primera línea.

La teoría para este proyecto se desarrolló en una colaboración internacional entre los físicos cuánticos de Innsbruck y de Madrid. Markus Müller, después de realizar la tesis doctoral en Innsbruck, se trasladó a Madrid donde está trabajando desde hace dos años como investigador posdoctoral en el Grupo de Información y Computación Cuántica (GICC) de Miguel Ángel Martín-Delgado. En este grupo desarrolla líneas de investigación en computación y simulaciones cuánticas en el marco de los proyectos PICC (Physics of Ion Coulomb Crystals) y QUITEMAD (Quantum Information Technologies Madrid).

“Esta conexión ideal entre físicos teóricos y experimentales con un intercambio de ideas tan intenso y directo sólo existe en muy pocos centros científicos del mundo, y es una de las grandes fortalezas de la física cuántica en Innsbruck. Nos llevó de nuevo a un área de la física que nadie había explorado antes”, se alegra Rainer Blatt.

“Aquí se simula con éxito en un experimento con pocos iones atrapados la física de sistemas de muchas partículas. Esto demuestra el enorme potencial y las posibilidades que ofrece la simulación cuántica”, añade Peter Zoller. Referencia bibliográfica:

Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A. Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller y R. Blatt. Quantum simulation of dynamical maps with trapped ions. Nature Physics (2013). DOI: 10.1038/NPHYS2630.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Revelan cómo nace el miedo en el cerebro y una posible vía para paralizarlo 19 marzo, 2024
    Un nuevo estudio ha logrado descifrar una serie de modificaciones en la química cerebral que, al influir sobre circuitos neuronales específicos, provocan que el miedo se generalice y aparezca en situaciones en las que no debería hacerlo. Este sistema es el que genera la sensación de miedo exacerbada y permanente que experimentan las personas que […]
    Pablo Javier Piacente
  • Crean el mapa 3D más extenso de los agujeros negros supermasivos activos del Universo 19 marzo, 2024
    En una verdadera proeza astronómica, los científicos han creado el mapa más extenso hasta el momento de los agujeros negros supermasivos activos y cuásares en el cosmos: el avance marca un salto significativo en nuestra comprensión de estos gigantes cósmicos y podría ayudar a entender mejor las propiedades de la materia oscura.
    Pablo Javier Piacente
  • Descubren cómo las primeras células de la Tierra aprovecharon el H2 como fuente de energía 19 marzo, 2024
    Un nuevo informe descubre cómo el gas hidrógeno, la energía del futuro, proporcionó energía en el pasado, en el origen de la vida hace 4 mil millones de años. Y confirmaría que la vida se originó en respiradores hidrotermales.
    HHU/T21
  • Algo extraño ocurre en el Cometa Diablo que nos visita durante el eclipse solar de abril 19 marzo, 2024
    Un cometa casi tan famoso como el Halley está brillando en el cielo nocturno de la Tierra y podría ser visible durante el eclipse solar total del 8 de abril que tendrá lugar sobre Norteamérica, pero algo extraño parece suceder en su núcleo.
    Redacción T21
  • Resuelto el misterio de una criatura marina con un caparazón repleto de ojos 18 marzo, 2024
    Los quitones o chitones son moluscos marinos dotados de pequeños ojos desperdigados por todo su caparazón, con lentes confeccionados con un mineral llamado aragonita. Estos primitivos órganos sensoriales son capaces de distinguir formas y luz: un nuevo estudio ha revelado por qué evolucionaron tan rápidamente y cuál es su papel en el desarrollo de los […]
    Pablo Javier Piacente
  • La mayor erupción volcánica de la era geológica actual ocurrió en Japón hace 7.300 años 18 marzo, 2024
    Un estudio detallado de los depósitos volcánicos submarinos alrededor de la caldera Kikai, en Japón, descubrió que un evento que tuvo lugar en esa región de Asia hace 7.300 años fue, con claridad, la mayor erupción volcánica registrada en el planeta durante el Holoceno, la época geológica actual iniciada hace aproximadamente 11.500 años.
    Pablo Javier Piacente
  • Las enfermedades neurológicas ya son el primer problema de salud mundial 18 marzo, 2024
    El 43% de la población mundial padece enfermedades neurológicas: afectan a 3.400 millones de personas y cuestan la pérdida de 443 millones de años de vida saludable. España supera en un 18% la media mundial de afectados por patologías que van desde dolores de cabeza tensionales hasta accidentes cerebrovasculares.
    Redacción T21
  • La Inteligencia Artificial aprende lo que significa estar vivo 18 marzo, 2024
    La IA ha descubierto en seis semanas unas células que la ciencia había tardado 134 años en identificar. Puede que haya tropezado también con un tipo de célula totalmente desconocida. ¿Qué va a pasar con los biólogos humanos?
    Eduardo Martínez de la Fe
  • Las ranas les guiñan el ojo a los machos elegidos para el apareamiento 17 marzo, 2024
    Un curioso estudio ha descubierto que las ranas les guiñan el ojo al macho para indicarle que le gusta. En respuesta al parpadeo, el macho lanza repetidamente un grito entrecortado y salta junto a ella para aparearse.
    N+1/T21
  • Los perros son nuestros terapeutas de cuatro patas 16 marzo, 2024
    Investigadores de Corea del Sur colocaron auriculares con electrodos a 30 adultos y luego midieron los cambios en sus ondas cerebrales mientras interactuaban con un caniche llamado Aro. Los resultados indicaron que pasear al perro hizo que los participantes se sintieran más relajados, cepillarle mejoró la concentración y jugar con la mascota produjo ambos efectos.
    Redacción T21