Tendencias21
Consiguen transformar el movimiento molecular aleatorio en energía mecánica

Consiguen transformar el movimiento molecular aleatorio en energía mecánica

Investigadores de la Universidad Libre de Berlín han desarrollado un método muy eficiente para transformar el movimiento aleatorio de una molécula en oscilaciones mecánicas de una palanca (oscilador), es decir, que permite transformar en energía el «ruido» del movimiento molecular. El avance supone un paso adelante en la fabricación de motores moleculares artificiales.

Consiguen transformar el movimiento molecular aleatorio en energía mecánica

Procesos como el movimiento de los fluidos, la intensidad de las señales electromagnéticas, las composiciones químicas, etc., están sujetas a las fluctuaciones aleatorias que, normalmente, denominamos ‘ruido’. Este ruido es una fuente de energía que alimenta la evolución de fenómenos, tales como, el clima del planeta o la evolución de los sistemas biológicos. La naturaleza ha demostrado que es posible recolectar la energía de ese ‘ruido’.

El grupo de Nanoimagen en nanoGUNE, de San Sebastián (Guipúzcoa), coordinado por José Ignacio Pascual, ha centrado su estudio en una molécula de hidrógeno (H2). En su experimento han observado que el movimiento aleatorio – el ruido – de una molécula de hidrógeno entre dos posiciones puede causar el movimiento periódico de una ‘máquina mecánica’.

El grupo de científicos ha controlado el movimiento aleatorio de una molécula de hidrógeno que, de esta forma, induce golpes aleatorios sobre la palanca. Así, han observado que, al moverse, la palanca modula a su vez el movimiento de la molécula y ambas entran en sintonía, amplificando el efecto causado por los golpes de la molécula.

“Los empujones aleatorios de la molécula acaban empujando a la palanca periódicamente cuando esta se acerca a la molécula, como en un columpio”, explica José Ignacio Pascual. “El resultado es que la molécula más pequeña que existe, una molécula de hidrógeno, ‘empuja’ una palanca que tiene una masa ¡diez trillones de veces mayor!”, concreta Pascual.

El principio subyacente es una teoría matemática conocida como Resonancia Estocástica que describe cómo encauzar la energía de movimientos aleatorios en un movimiento periódico y que, por tanto, puede dar lugar a su aprovechamiento. En este caso, se utiliza el movimiento concertado de las fluctuaciones aleatorias del hidrógeno y el movimiento periódico de un oscilador mecánico para amplificar la transferencia de energía entre molécula y oscilador.

Para acoplar su movimiento, la molécula se confinó en un pequeño espacio entre una superficie plana y una punta afilada del microscopio de fuerza atómica (AFM). Este microscopio utiliza el movimiento periódico de la punta situada al final de un oscilador mecánico muy sensible para ‘sentir’ las fuerzas que existen en la nanoescala.

Aplicaciones futuras

Los movimientos aleatorios de la molécula ejercen fuerza contra la punta y la hacen oscilar. La oscilación de la punta, a su vez, modula el movimiento aleatorio de la molécula de hidrógeno y, por tanto, de las fuerzas que sobre ella actúan. El resultado fue un ‘baile’ orquestado entre la punta y la molécula ruidosa. De esta forma, la punta osciló distancias superiores al tamaño de la molécula gracias a la energía extraída del ‘ruido’.

“En nuestro experimento, el movimiento aleatorio de la molécula se realiza inyectando corriente eléctrica, y no temperatura, a través de la molécula y, por tanto, funciona como un motor convirtiendo energía eléctrica en mecánica”, dice José Ignacio Pascual.

Un aspecto prometedor de este resultado es que podría ser tenido en cuenta para el diseño de motores moleculares artificiales. De hecho, ya se ha propuesto que el mecanismo de la Resonancia Estocástica esté detrás de los motores biomoleculares que hacen funcionar la actividad celular de forma natural. Y este fenómeno podría aplicarse, según los autores del estudio, para inducir oscilaciones en motores moleculares artificiales, que son complejas moléculas diseñadas para que puedan oscilar o rotar en una sola dirección. Los autores no descartan, además, que la fluctuación molecular pueda ser producida por otras fuentes, como la luz.

Los experimentos se realizaron utilizando un microscopio de fuerza atómica ultra-sensible, construido en el Departamento de Física de la Freie Universität Berlin (Universidad Libre de Berlín) para investigar interruptores moleculares absorbidos sobre superficies, uno de los principales retos del proyecto de investigación colaborativo SFB 658.

“Teniendo en cuenta el nivel de desarrollo de la técnica que se ha alcanzado gracias a la contribución de muchos grupos, la detección del movimiento de la molécula con el microscopio no es tan difícil”, comentan Christian Lotze y Martina Corso, quien apunta que “el logro más relevante es la identificación e interpretación del efecto: que la molécula provoca movimiento en el oscilador”.

En línea con sus coautores, Katharina Franke, asegura que la investigación «se centrará ahora en la búsqueda de otras fuentes de ‘ruido’ molecular, como las fluctuaciones eléctricas o magnéticas, que podrían conducir a una transferencia de energía más eficiente”.

Referencia bibliográfica:

Christian Lotze, Martina Corso, Katharina J. Franke, Felix von Oppen, Jose Ignacio Pascual. Driving a Macroscopic Oscillato rwith the Stochastic Motion of a Hydrogen Molecule. Science. DOI: 10.1126/science.1227621

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • La IA podría ser el límite para todas las civilizaciones avanzadas en el Universo 10 abril, 2024
    Un nuevo estudio sugiere que el desarrollo de la Inteligencia Artificial (IA) hacia una Superinteligencia Artificial (ASI) podría explicar por qué no hemos detectado aún otras civilizaciones avanzadas en el cosmos, a pesar de la alta probabilidad de su existencia: en vez de supernovas, plagas, guerras nucleares o eventos climáticos extremos que hayan sido un […]
    Pablo Javier Piacente
  • Higgs ha podido dejar abierta la puerta a la Nueva Física 10 abril, 2024
    La muerte de Peter Higgs, que pasará a la historia como el descubridor del bosón que explica cómo se forma la materia, deja un legado en la historia de la física que todavía puede aportar algo más trascendente: la prueba definitiva de una Nueva Física más allá del Modelo Estándar.
    Eduardo Martínez de la Fe
  • Descubren neuronas "zombis" en el cerebro, que serían claves en el proceso de aprendizaje 9 abril, 2024
    Las neuronas "zombis" son unidades vivas pero funcionalmente alteradas, que parecen "dormidas" en determinadas situaciones: los investigadores han revelado que cumplen un papel fundamental en el cerebelo, concretamente en aspectos relativos a la forma en la cual aprendemos.
    Pablo Javier Piacente
  • La Luna se invirtió por completo hace más de 4 mil millones de años 9 abril, 2024
    Hace unos 4.220 millones de años, poco después de que la Luna se formara a partir de un trozo de la Tierra que se desprendió durante una colisión violenta a principios de la historia del Sistema Solar, nuestro satélite se dio vuelta y comenzó así una etapa clave de su desarrollo. Así lo ha comprobado […]
    Pablo Javier Piacente
  • Arte rupestre de hace 2.000 años podría representar música psicodélica 9 abril, 2024
    Aunque la música psicodélica moderna no nació hasta la década de 1960, las influencias psicodélicas se pueden encontrar en el arte rupestre de hace miles de años. Grabados precolombinos en piedra, de 2.000 años de antigüedad, reflejan figuras humanas bailando en estado de trance chamánico.
    Redacción T21
  • Descubren antiguas partículas de polvo espacial provenientes de otro sistema estelar 8 abril, 2024
    Los astrónomos han descubierto una rara partícula de polvo atrapada en un antiguo meteorito extraterrestre, que fue formado por una estrella distinta a nuestro Sol. El polvo se habría originado luego de una supernova: las partículas son como "cápsulas del tiempo celestes" y proporcionan una instantánea de la vida de su estrella madre.
    Pablo Javier Piacente
  • Un lejano mundo deja ver una increíble explosión de luz en sus cielos "metálicos" 8 abril, 2024
    Utilizando datos del Telescopio Espacial CHEOPS de la Agencia Espacial Europea (ESA), cuyo centro de operaciones científicas se localiza en la Universidad de Ginebra, en Suiza, un equipo internacional de científicos logró detectar por primera vez un extraño fenómeno lumínico denominado “gloria” en un exoplaneta: el estallido de luz se apreció en WASP-76b, un mundo […]
    Pablo Javier Piacente
  • El ordenador cuántico desembarca en el mundo universitario 8 abril, 2024
    La última computadora cuántica System One de IBM se ha instalado en el Instituto Politécnico Rensselaer (RPI) en Nueva York. Es la primera máquina cuántica de IBM instalada en un campus universitario de Estados Unidos. Una revolución en el mundo académico que impulsa la formación de un ecosistema cuántico global.
    Eduardo Martínez de la Fe
  • Los cocodrilos imitan a las ballenas antes de aparearse 7 abril, 2024
    Los cocodrilos cortejan a las hembras lanzando un chorro de agua al aire, tal como hacen las ballenas cuando salen a la superficie. A ellas les encantan también los silbidos y las burbujas que les dedican sus parejas antes de aparearse. Se está elaborando un diccionario de cocodrilos.
    Redacción T21
  • Los drones policiales se implantan en Estados Unidos 6 abril, 2024
    Chula Vista, un suburbio de San Diego, California, con una población de 275.000 habitantes, es una de las pocas ciudades estadounidenses que utiliza sistemáticamente drones para ayudar a la policía en caso de emergencia. En activo desde 2018, el sistema está sirviendo de referencia a otros Estados y tal vez otros países.
    Redacción T21