Tendencias21

Descubren mecanismos inesperados en la formación de los recuerdos

Científicos de EE.UU. han descubierto inesperados mecanismos moleculares que permiten que las sinapsis del cerebro cambien de forma, y almacenen así los recuerdos. Mediante un experimento con ratones, extrapolable según ellos a los humanos, han observado el papel de diversas sustancias en este proceso. El descubrimiento podría arrojar luz sobre enfermedades como la epilepsia.

Descubren mecanismos inesperados en la formación de los recuerdos

Nuestros cerebros almacenan los recuerdos a través de cambios físicos en las sinapsis, las diminutas conexiones entre las neuronas.

Un nuevo estudio realizado por investigadores de la Universidad Duke (Carolina del Norte) y el Max Planck Florida Institute for Neuroscience, ambos de EE.UU., revela inesperados mecanismos moleculares mediante los cuales tienen lugar estos cambios. Publicados en Nature, los resultados también podrían arrojar luz sobre cómo se desarrollan algunas enfermedades, incluidas ciertas formas de epilepsia.

«Estamos empezando a desentrañar algunos de los misterios que subyacen a la adquisición de un recuerdo en el cerebro normal, así como la forma en que un cerebro normal se transforma en un cerebro epiléptico», dice el co-investigador principal del estudio James McNamara, profesor en los departamentos de neurobiología y neurología de la Universidad Duke.

Cuando adquirimos un nuevo recuerdo, las conexiones, o sinapsis, entre ciertos grupos de neuronas se fortalecen. En concreto, el extremo receptor de un par de estas neuronas -que consiste en una pequeña protuberancia llama espina dendrítica- se hace un poco más grande.

Los investigadores sospechan desde hace mucho tiempo que un receptor cerebral llamado TrkB está involucrado en el crecimiento de las espinas cuando aprendemos, pero el nuevo estudio confirma que el receptor es de hecho crucial y ahonda en cómo funciona.

Las tecnologías clave que permitieron este hallazgo incluyen: un sensor molecular que el grupo desarrolló para rastrear la actividad de TrkB, y microscopios que les permitieron visualizar una sola espina en un área de tejido vivo de cerebro de ratón, todo en tiempo real.

El grupo también fue capaz de añadir una pequeña cantidad de producto químico de señalización, glutamato, en esa espina con el fin de imitar lo que ocurre durante el aprendizaje. Esto hizo que las espinas crecieran.

«El cerebro de ratón tiene aproximadamente 70 millones de neuronas, y la mayoría de ellas están salpicadas con miles de espinas», dice McNamara en la información de Duke. «Por lo tanto, poder modelar y estudiar los acontecimientos que ocurren en una sola espina de una única neurona es algo notable.»

Sin el receptor TrkB, no se producía el crecimiento de la espina en respuesta a la sustancia química de señalización, descubrió el grupo.

El equipo sospechaba que otro agente, el Factor de crecimiento Neurotrófico Derivado del Cerebro (BDNF), estaba también involucrado, ya que es la llave molecular para el bloqueo de TrkB. Los científicos crearon un sensor molecular para BDNF y mostraron que imitando la señal asociada con el aprendizaje provocaban la liberación de BDNF desde el extremo de recepción de la sinapsis. Esto fue un sorpresa porque el saber convencional sostiene que el BDNF sólo se libera a partir de la neurona emisora, no de la neurona receptora.

Personas

El hecho de que la neurona receptora descargue BDNF en el espacio entre las neuronas y a la vez lo detecte es algo «extremadamente único, biológicamente hablando», dice el co-investigador principal del Ryohei Yasuda, director científico del Instituto Max Planck de Neurociencia. «Una posibilidad es que el BDNF regule varias células que le rodean a la vez. Estamos interesados ​​en seguir trabajando para entender el proceso exacto».

Aunque los experimentos se llevaron a cabo en ratones, es probable que la interacción entre TrkB y BDNF sea importante para el aprendizaje y la memoria también en personas, dice McNamara.

Es más, es probable que los mismos mecanismos intervegan en una de las formas más comunes de epilepsia, llamada epilepsia del lóbulo temporal (ELT), que ataca a las regiones del cerebro responsables de la memoria y el aprendizaje.

Se cree que algunos casos de epilepsia del lóbulo temporal están causados por un solo episodio prolongado de convulsiones al inicio de la vida. Durante el episodio, el glutamato, el mismo neuroquímico implicados en la memoria, se libera, pero a niveles mucho más altos y durante tiempos mucho más largos.

El trabajo previo de McNamara muestra que el receptor TrkB es crucial para el desarrollo de la epilepsia del lóbulo temporal, y el pasado otoño su grupo demostró que la inhibición de la señalización de TrkB brevemente tras el primer episodio de convulsión impide el desarrollo de TLE en ratones.

El grupo de McNamara está llevando a cabo experimentos adicionales para entender lo que sucede después de que se active el TrkB para agrandar las espinas. Además, otros mecanismos están contribuyendo probablemente a la activación de TrkB, tanto en las cuuestiones de la memoria como en los episodios epilépticos, y el grupo de McNamara está buscándolos.

Referencia bibliográfica:

Stephen C. Harward, Nathan G. Hedrick, Charles E. Hall, Paula Parra-Bueno, Teresa A. Milner, Enhui Pan, Tal Laviv, Barbara L. Hempstead, Ryohei Yasuda, James O. McNamara: Autocrine BDNF–TrkB signalling within a single dendritic spine. Nature (2016). DOI: 10.1038/nature19766.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren rastros de una enigmática civilización antigua en Colombia 3 junio, 2025
    Un equipo internacional de investigadores analizó el ADN de 21 conjuntos de restos humanos recolectados de cinco sitios en la meseta del Altiplano, en el centro de Colombia: los registros muestran la existencia de una población antigua, con una genética no relacionada con cualquier descendencia moderna. Se trataría de una civilización que puede haber sido […]
    Pablo Javier Piacente / T21.
  • Crean una tela inteligente que mide constantes vitales mediante el sonido 3 junio, 2025
    Investigadores suizos han desarrollado productos textiles inteligentes que utilizan ondas acústicas en lugar de electrónica para medir el tacto, la presión y el movimiento con precisión. El secreto es el uso de microfibras de vidrio que emiten y recepcionan las señales sonoras.
    Pablo Javier Piacente / T21
  • Oleada cósmica: cinco asteroides rozan la Tierra en solo cuatro días 3 junio, 2025
    Cinco rocas espaciales pasarán a millones de kilómetros de nuestro planeta en apenas cuatro días, con el 4 de junio como jornada clave. No representan peligro, pero ofrecen una oportunidad única para la ciencia.
    Redacción T21
  • Estados Unidos crea una "máquina del tiempo científica", capaz de condensar en días décadas de investigación 3 junio, 2025
    El próximo superordenador Doudna, que Estados Unidos tendrá operativo en 2026, está diseñado para ser el catalizador de una nueva era de descubrimientos, transformando la forma en que abordamos desde los misterios del cosmos hasta las complejidades de la vida misma.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Se revela una estructura oculta al borde del Sol 3 junio, 2025
    La atmósfera exterior del Sol, conocida como corona solar, ha revelado recientemente detalles asombrosos gracias a avances en óptica adaptativa y técnicas de observación de alto contraste. Un equipo internacional de científicos ha logrado capturar las imágenes más nítidas hasta la fecha de la corona solar, mostrando fenómenos como las “gotas de lluvia” solares y […]
    Redacción T21
  • Dormir mal puede estar relacionado con problemas en la audición 2 junio, 2025
    Una investigación realizada en China y otros estudios recientes sugieren que las patologías del sueño, como el insomnio, el trastorno del movimiento periódico de las extremidades y la apnea del sueño podrían estar relacionados con la pérdida auditiva.
    Pablo Javier Piacente / T21
  • Un tatuaje electrónico puede leer los niveles de estrés 2 junio, 2025
    Un nuevo tatuaje electrónico portátil y ultradelgado que se coloca en la frente de forma no invasiva monitorea de manera inalámbrica la actividad cerebral, rastrea la carga cognitiva en tiempo real y potencialmente predice la fatiga mental y el estrés antes que se haga evidente.
    Pablo Javier Piacente / T21
  • ¿El próximo Einstein será un algoritmo? Nace la primera científica artificial que genera conocimiento 2 junio, 2025
    Una inteligencia artificial ha concebido, ejecutado y escrito una investigación original que ha sido aceptada en ACL 2025, uno de los foros científicos más prestigiosos del mundo. Zochi es la primera científica artificial reconocida por la élite.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Crean un "hormigón viviente" que se repara a sí mismo 2 junio, 2025
    Un equipo de investigadores ha desarrollado un tipo de concreto que puede curarse a sí mismo aprovechando el poder del liquen sintético. Mejora notablemente intentos anteriores de producir hormigón "vivo" hecho con bacterias, ya que el nuevo material logra ser completamente autosuficiente.
    Redacción T21
  • El eco cuántico del cerebro: ¿estamos entrelazados con nuestros pensamientos? 2 junio, 2025
    El entrelazamiento cuántico, la "acción fantasmal a distancia" que tanto intrigó a Einstein, podría no ser solo una rareza del microcosmos, sino que tendría un eco medible en los procesos cognitivos inconscientes mediante un aparente fenómeno “supercuántico”.
    EDUARDO MARTÍNEZ DE LA FE/T21