Un conjunto de nuevos nanomateriales experimentales desarrollados en el marco de un proyecto de investigación del Rensselaer Polytechnic Institute, destinados a su uso en misiones espaciales debido a sus condiciones de mayor resistencia y durabilidad, serán probados en órbita a través del transbordador espacial Atlantis, que los llevará a la Estación Espacial Internacional (ISS).
La misión tiene fecha de despegue prevista para hoy, 16 de noviembre, y transportará los nuevos nanomateriales para ser montados en el casco de la estación espacial, con el propósito de poner a prueba su reacción ante el clima y los peligros del espacio. De esta forma, se evaluará el rendimiento de los nanocompuestos para comprobar su eficacia y evaluar su posible uso en nuevas misiones espaciales de mayor complejidad.
El proyecto es financiado como parte de la Multi University Research Initiative (MURI), encarada por la Fuerza Aérea de los Estados Unidos. El equipo de ingenieros e investigadores encargados de desarrollar estos nuevos nanomateriales estuvo conformado por especialistas del Rensselaer Polytechnic Institute y del Mechanical and Aerospace Engineering Department de la Universidad de Florida.
La difusión de las características de los nuevos nanocompuestos y de su puesta en órbita con fines experimentales se concretó mediante una nota de prensa del Rensselaer Polytechnic Institute. Linda Schadler, del Departamento de Ciencia de los Materiales e Ingeniería, y Thierry Blanchet, del Departamento de Mecánica e Ingeniería Aeroespacial y Nuclear del Rensselaer Polytechnic Institute, junto a Greg Sawyer, de la Universidad de la Florida, fueron los principales responsables del trabajo.
Nanocompuestos de teflón tratados con alúmina
Vale destacar que el primer grupo de nanomateriales a probar tiene como principal característica una gran resistencia al desgaste bajo fricción. Estos nanocompuestos fueron creados mediante la mezcla de partículas de alúmina a nanoescala con politetrafluoroetileno (PTFE), conocido comercialmente como teflón.
El grupo de investigación trabajó incorporando una pequeña cantidad de aditivo sobre el PTFE, en distintas condiciones. El resultado final es un nanomaterial más fuerte y más duradero que el PTFE convencional, que además conserva prácticamente las mismas potencialidades como antiadherente que el PTFE (teflón) no tratado.
El principal beneficio obtenido con este nuevo material es que el PTFE tradicional puede sobrevivir a lo largo de una superficie de deslizamiento de unos pocos kilómetros antes de sufrir un fuerte desgaste, mientras que el nuevo nanocompuesto es capaz de deslizarse por una superficie de más de 100.000 kilómetros antes de acusar algún tipo de secuela.
Es importante destacar que el PTFE (teflón) se utiliza habitualmente para cubrir la superficie de las piezas móviles en diferentes dispositivos. Por consiguiente, resulta vital en términos de eficacia de las operaciones que este material responda adecuadamente a las distintas agresiones del ambiente y al desgaste propio de las actividades.
Puestos a prueba en el espacio
Ahora llegará el momento de probar las condiciones del nuevo nanomaterial en el espacio, ya que justamente fue creado para ser aprovechado en el terreno de la ingeniería aeroespacial. En un entorno de laboratorio, la tasa de desgaste del material es cuatro veces menor a la que presenta el PTFE sin tratamiento.
Un punto importante es que estos avances en nanocompuestos no incrementan el coeficiente de fricción en los materiales empleados, lo que significa que el aumento de la durabilidad y la resistencia no se concretará a expensas de la creación de fricción extra, algo que elevaría la demanda energética de los diferentes dispositivos.
El segundo conjunto de nanomateriales que serán probados en el espacio son nanocompuestos de polímero conductivo. En ambos casos, estarán expuestos a la radiación ultravioleta y a temperaturas desde -40 grados a 60 grados centígrados, en el marco de la Estación Espacial Internacional (ISS), que viaja a unos 27.700 km/h.
Los compuestos conductores, desarrollados por Linda Schadler del Rensselaer Polytechnic Institute y Justin Bult, del National Renewable Energy Laboratory (Departamento de Energía de los Estados Unidos), tuvieron que ser desarrollados en menos de una semana para poder concretar esta prueba. El experimento podría aportar importantes conocimientos y avances sobre estos nuevos nanomateriales y su comportamiento en el espacio, pensando en un futuro uso en naves espaciales y dispositivos electrónicos.
Hacer un comentario