Tendencias21
Un 'mini-cerebro' de la médula espinal nos permite mantener el equilibrio

Un 'mini-cerebro' de la médula espinal nos permite mantener el equilibrio

Científicos estadounidenses han averiguado cómo funciona el sistema nervioso de los animales para mantener el equilibrio, por ejemplo, en una superficie helada. Un ‘mini-cerebro’ situado en la médula espinal combina la información procedente de los sensores de ‘tacto ligero’ de los pies con la procedente del cerebro, para ajustar los músculos y las articulaciones y mantener el equilibrio.

Un 'mini-cerebro' de la médula espinal nos permite mantener el equilibrio Caminar a través de un estacionamiento helado en invierno y permanecer en posición vertical requiere una intensa concentración.

Pero un nuevo descubrimiento sugiere que gran parte del acto de equilibrio que nuestros cuerpos realizan cuando se enfrentan a una tarea como esa sucede inconscientemente, gracias a un grupo de neuronas de nuestra médula espinal que funciona como un «mini-cerebro» para integrar la información sensorial y hacer los ajustes necesarios en nuestros músculos para que no nos resbalemos y caigamos.

En un artículo publicado ayer en la revista Cell, científicos del Instituto Salk de Estudios Biológicos (La Jolla, California, EE.UU.) cartografían los circuitos neuronales de la médula espinal que procesan el sentido del tacto ligero. Este circuito permite que el cuerpo realice de forma refleja pequeños ajustes en la posición del pie y el equilibrio por medio de sensores de tacto ligero en los pies.

El estudio, realizado en ratones, ofrece el primer mapa detallado de un circuito espinal que sirve como centro de control para la integración las órdenes motoras del cerebro con información sensorial de las extremidades. Una mejor comprensión de estos circuitos debería ayudar en el desarrollo de terapias para lesiones de la médula espinal y enfermedades que afectan a las habilidades motoras y el equilibrio, así como para prevenir las caídas de los ancianos.

«Cuando nos ponemos de pie y andamos, sensores táctiles de las plantas de nuestros pies detectan cambios sutiles en la presión y el movimiento. Estos sensores envían señales a nuestra médula espinal y al cerebro», explica Martyn Goulding, profesor de Salk, en la nota de prensa del Instituto.

«Nuestro estudio abre lo que era básicamente una caja negra, ya que hasta ahora no sabíamos cómo se codifican o procesan estas señales en la médula espinal. Por otra parte, no estaba claro cómo esta información táctil se fundía con otra información sensorial para controlar el movimiento y la postura».

Los sentidos

Mientras que el papel del cerebro suele ser el principal en logros cerebrales tales como la filosofía, las matemáticas y el arte, gran parte de lo que el sistema nervioso hace es usar la información obtenida de nuestro entorno para guiar nuestros movimientos.

Caminando por el estacionamiento de hielo, por ejemplo, varios de nuestros sentidos se dedican a evitar que nos caigamos. Nuestros ojos nos dicen si estamos sobre hielo brillante o en asfalto húmedo. Los sensores de equilibrio de nuestro oído interno mantienen la cabeza paralela al suelo. Y los sensores de nuestros músculos y articulaciones siguen las posiciones cambiantes de nuestros brazos y piernas.

Cada milisegundo, múltiples flujos de información, incluyendo las señales del canal de transmisión del tacto ligero que el equipo de Goulding ha identificado, fluyen hacia el cerebro. Una forma que tiene el cerebro de manejar estos datos es por pre-procesamiento en estaciones de paso sensoriales, como el ojo o la médula espinal.

El ojo, por ejemplo, tiene una capa de neuronas y sensores de luz en su parte trasera que realiza cálculos visuales -proceso conocido como «codificación»- antes de que la información pase a los centros visuales del cerebro.

En el caso del tacto, los científicos han pensado durante mucho tiempo que la coreografía neurológica del movimiento se basa en circuitos de análisis de datos de la médula espinal. Pero hasta ahora ha sido muy difícil identificar con precisión los tipos de neuronas implicadas y trazar la forma en que se conectan entre sí. Un 'mini-cerebro' de la médula espinal nos permite mantener el equilibrio Neuronas RORα

En su estudio, los científicos de Salk desmitifican este afinado sistema de control sensorial-motor. Usando técnicas de imagen de vanguardia basadas en virus de la rabia rediseñados, rastrearon las fibras nerviosas que transportan las señales de los sensores táctiles de los pies a sus conexiones en la médula espinal.

Encontraron que estas fibras sensoriales se conectan en la médula espinal con un grupo de neuronas conocidas como neuronas RORα, llamadas así por un tipo específico de receptor molecular encontrado en el núcleo de estas células.

Las neuronas RORα a su vez están conectadas con neuronas de la región del motor de cerebro, lo que sugiere que podrían servir como enlace clave entre el cerebro y los pies.

Cuando el equipo de Goulding desactivó las neuronas RORα de la médula espinal utilizando ratones modificados genéticamente desarrollados en Salk, descubrieron que estos ratones eran sustancialmente menos sensibles al movimiento a través de la superficie de la piel o a una pieza de cinta adhesiva colocada en sus pies. A pesar de esto, los animales eran todavía capaces de caminar o estar de pie normalmente en terreno plano.

Sin embargo, cuando los investigadores hicieron caminar a los animales a través de un camino estrecho y elevado, una tarea que requiere más esfuerzo y habilidad, los animales lo pasaban mal, y se movían de manera más torpe que los animales con las neuronas RORα intactas.

Los científicos lo atribuyen a la reducción de capacidad de los animales para detectar la deformación de la piel cuando un pie se desliza por el borde y para responder en consecuencia con pequeños ajustes en la posición de los pies y el equilibrio: habilidades motoras similares a las necesarias para mantener el equilibrio sobre hielo u otras superficies resbaladizas.

Otra característica importante de las neuronas RORα es que no sólo reciben señales desde el cerebro y los sensores de tacto ligero, sino que también se conectan directamente con las neuronas de la médula espinal ventral que controlan el movimiento. Por lo tanto, están en el centro de un «mini-cerebro» de la médula espinal que integra las señales del cerebro con señales sensoriales para asegurarse de que los miembros se mueven correctamente.

Combinación

«Creemos que estas neuronas son responsables de la combinación de toda esta información para decir a los pies que se muevan», afirma Steve Bourane, investigador postdoctoral en el laboratorio de Goulding y autor principal del artículo.

«Si usted se queda parado sobre una superficie resbaladiza durante mucho tiempo, se dará cuenta de que los músculos de la pantorrilla se endurecen, pero puede no haber notado que los estaba usando. Su cuerpo está en piloto automático, haciendo constantemente correcciones sutiles mientras le da la libertad de atender otras tareas de más nivel».

El estudio del equipo representa el comienzo de una nueva ola de investigación que promete dar explicaciones precisas y completas a cómo el sistema nervioso codifica e integra la información sensorial para generar movimiento consciente e inconsciente.

«Cómo crea el cerebro una percepción sensorial y la convierte en una acción es una de las cuestiones centrales de la neurociencia», añade Goulding. «Nuestro trabajo está ofreciendo una visión muy potente de las vías neuronales y los procesos que subyacen en el control del movimiento y la forma en que el cuerpo percibe su entorno. Estamos en el comienzo de un gran cambio real en este campo, lo cual es muy emocionante». Referencia bibliográfica:

Steeve Bourane, Katja S. Grossmann, Olivier Britz, Antoine Dalet, Marta Garcia Del Barrio, Floor J. Stam, Lidia Garcia-Campmany, Stephanie Koch, Martyn Goulding. Identification of a Spinal Circuit for Light Touch and Fine Motor Control. Cell (2015). DOI: 10.1016/j.cell.2015.01.011

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Los gorilas occidentales votan para tomar decisiones colectivas 30 octubre, 2024
    Un nuevo estudio desmonta la creencia de que, entre los grandes simios, es el macho dominante quien decide por todo el grupo. Entre los gorilas occidentales de la República Centroafricana, cada individuo tiene voz y voto, especialmente cuando se trata de cambiar de asentamiento.
    Redacción T21
  • Podemos comprender oraciones escritas en un parpadeo 29 octubre, 2024
    Nuestro cerebro puede entender oraciones escritas en lo que dura el parpadeo de un ojo, según revela un nuevo estudio. Los científicos descubrieron que el procesamiento del lenguaje escrito ocurre a velocidades significativamente más rápidas de las necesarias para hablar o comunicarse en voz alta.
    Pablo Javier Piacente
  • El beso humano habría comenzado como un ritual de acicalamiento de los simios 29 octubre, 2024
    El acto final del aseo de los simios implica labios sobresalientes y una ligera succión, para eliminar los desechos o parásitos, un comportamiento que persistió incluso cuando su función higiénica disminuyó. Un nuevo estudio sugiere que esta conducta refleja la forma, el contexto y la función de los besos humanos modernos.
    Pablo Javier Piacente
  • Thriller policial en la arqueología: el ADN confirma una leyenda nórdica de 800 años 29 octubre, 2024
    Un fascinante descubrimiento arqueológico en Noruega ha arrojado nueva luz sobre un misterioso episodio de la historia medieval del país. Revela que hace 800 años existió una deriva genética única que se puede observar entre los actuales habitantes del sur del país.
    Redacción T21
  • Descubren moléculas complejas de carbono en el espacio interestelar 28 octubre, 2024
    Un equipo de investigadores ha descubierto grandes moléculas que contienen carbono en una distante nube interestelar de gas y polvo: el hallazgo muestra que las moléculas orgánicas complejas, que incluyen carbono e hidrógeno, probablemente existieron en la nube de gas frío y oscuro que dio origen a nuestro Sistema Solar.
    Pablo Javier Piacente
  • El colapso de una corriente oceánica clave podría tener impactos catastróficos en todo el planeta 28 octubre, 2024
    Los científicos ya no consideran de baja probabilidad el colapso de la Circulación de Volteo Meridional del Atlántico (AMOC), que incluye a la Corriente del Golfo: se trata de una de las corrientes oceánicas más importantes para el equilibrio ambiental y climático global, y su debilitamiento provocaría eventos climáticos extremos, trayendo mucha más inestabilidad y […]
    Pablo Javier Piacente
  • Desafío a la consciencia: la cognición puede existir en organismos sin cerebro 28 octubre, 2024
    Una nueva investigación ha comprobado que los hongos muestran indicios de cognición y consciencia mínima, sin tener cerebro ni sistema nervioso para percibir el entorno ni tomar decisiones. Su comportamiento sigue patrones cognitivos para asegurar su supervivencia y crecimiento, todo un desafío a lo que sabemos sobre la consciencia.
    Eduardo Martínez de la Fe
  • Nuestra percepción del tiempo se modifica de acuerdo con lo que vemos 27 octubre, 2024
    Una nueva investigación revela que diferentes estímulos visuales pueden distorsionar significativamente la percepción humana del tiempo: ver escenas más destacadas y memorables puede crear la impresión de que el tiempo avanza más lentamente, en tanto que las imágenes desordenadas y caóticas comprimen la percepción del tiempo, haciendo que parezca acelerarse.
    Pablo Javier Piacente
  • Crean un cerebro fantasma en forma de cubo impreso en 3D 26 octubre, 2024
    Investigadores austriacos han desarrollado un modelo de cerebro impreso en 3D basado en la estructura de las fibras cerebrales visibles mediante imágenes de resonancia magnética. Permite estudiar la compleja red neuronal con una precisión sin precedentes.
    Redacción T21
  • Crean un atlas de embriones que muestra cómo las células se mueven y se desarrollan a través del tiempo 25 octubre, 2024
    Un equipo de científicos ha desarrollado un atlas celular denominado "Zebrahub", que evidencia el desarrollo de embriones de pez cebra y la evolución celular con el paso del tiempo: los investigadores dicen que también nos ayudará a aprender más sobre nuestro propio desarrollo biológico.
    Pablo Javier Piacente