Tendencias21
Una nueva piel artificial hará irrompibles los dispositivos electrónicos

Una nueva piel artificial hará irrompibles los dispositivos electrónicos

Ingenieros de la Universidad de Stanford, en Estados Unidos, han conseguido crear por vez primera una piel artificial que, formada por un polímero plástico flexible y partículas de níquel, es capaz de autorrepararse hasta 50 veces seguidas. Además, los científicos han conseguido que este material sea un buen conductor de electricidad. Ambas características resultarán esenciales para la fabricación de prótesis inteligentes y dispositivos electrónicos que se arreglen solos. Por Marta Lorenzo.

Una nueva piel artificial hará irrompibles los dispositivos electrónicos

Un equipo de químicos e ingenieros de la Universidad de Stanford ha creado el primer material sintético que es sensible al tacto y capaz de repararse solo de forma rápida y repetida, a temperatura ambiente.

El avance podría servir para fabricar prótesis inteligentes o aparatos electrónicos personales más resistentes y autorreparables, publica la Universidad de Stanford en un comunicado.

Los investigadores que intentan imitar la piel humana conocen bien sus sorprendentes características. Nuestra piel no solo es sensible –para enviar al cerebro la información que este precisa sobre presión y temperatura- sino que también constituye una barrera protectora contra el medio.

La combinación de estas dos características en un material sintético suponía un apasionante reto para la profeosra de ingeniería química de Stanford, Zhenan Bao y su equipo de colaboradores.

Lo que este grupo de investigadores ha conseguido es crear el primer material que puede tanto detectar la presión sutil como autorrepararse cuando se rompe o se corta. Los resultados del presente trabajo han aparecido publicados en la revista Nature Nanotechnology.

En la última década, se han producido importantes avances en la fabricación de piel sintética, afirma Bao, investigadora principal del estudio, pero incluso los materiales de autorreparación más eficaces conseguidos hasta ahora han presentado serios inconvenientes.

Por ejemplo, para funcionar, algunos de ellos deben ser expuestos a altas temperaturas, lo que hace poco práctico su uso corriente. Otros son capaces de autorrepararse a temperatura ambiente, pero cuando se autorreparan, por ejemplo, de un corte, su estructura mecánica o química cambia, por lo que sólo pueden autorrepararse una sola vez. Por último, y lo más importante, ningún material autorreparable de los fabricados hasta el momento ha resultado ser un buen conductor de electricidad.

Y «para la interacción de este tipo de materiales con el mundo digital, lo ideal es que estos sean buenos conductores», señala Benjamin Chee Keong-Tee, autor principal del artículo de Nature Nanotechnology.

Una nueva receta

Los investigadores lograron crear este nuevo material autorreparable combinando dos “ingredientes”. De esta manera lograron mezclar lo que Bao llama «lo mejor de ambos mundos»: la capacidad de autorreparación de los polímeros plásticos y la conductividad de los metales.

Los científicos comenzaron su investigación con un plástico constituido por largas cadenas de moléculas unidas por puentes de hidrógeno (constituidos por la atracción relativamente débil de la región cargada positivamente de cada átomo de hidrógeno y la región cargada negativamente del siguiente átomo).

«Estos vínculos dinámicos permiten que el material se autorrepare», explica Chao Wang, co-autor del estudio. Las moléculas se rompen con facilidad, pero luego, cuando son reconectadas, los vínculos o puentes se reorganizan a sí mismos de nuevo, restaurando la estructura del material dañado, añade Wang. El resultado fue un material flexible y autorreparable, incluso a temperatura ambiente.

En una segunda fase de la investigación, Bao y sus colaboradores agregaron a este polímero elástico pequeñas partículas de níquel (metal de transición de color blanco plateado, conductor de la electricidad y del calor), con las que aumentaron su resistencia mecánica. A nanoescala, las superficies de estas partículas son ásperas, lo que resultó clave en la fabricación del material conductor.

Tee compara estas asperezas superficiales con «mini-machetes»: cada borde que sobresale concentra un campo eléctrico, lo que facilita el flujo de corriente entre las partículas. El resultado obtenido fue un polímero con características poco comunes: «La mayoría de los plásticos son buenos aislantes, pero este es un excelente conductor», afirma Bao.

Autorreparación lograda

El siguiente paso de la investigación fue constatar que el material podía restaurar tanto su resistencia mecánica como su conductividad eléctrica tras ser dañado.

Para ello, los investigadores cogieron una tira delgada del material desarrollado, y la cortaron por la mitad con un bisturí. Tras presionar suavemente las piezas durante unos segundos, constataron que el material había recuperado el 75% de su fuerza y de su conductividad eléctrica originales. Además, en unos 30 minutos, el material quedó restaurado casi al 100%. «Incluso la piel humana tarda días en sanar. Así que creo que esto es muy bueno «, apunta Tee.

Asimismo, los científicos comprobaron que la misma muestra del material podía cortarse varias veces por el mismo sitio sin perder su capacidad autorreparadora. Después de 50 cortes y reparaciones, la muestra aún resistía la flexión y el estiramiento igual que al principio de las pruebas.

La naturaleza compuesta de este material ha resultado un auténtico desafío de ingeniería para el equipo de científicos porque, aunque el níquel resultó clave para hacer que el material fuera conductor y fuerte, también entorpeció el proceso de autorreparación, evitando que los enlaces de hidrógeno se reconectaran todo lo bien que debían.

Por eso, en futuras pruebas, Bao y su equipo planean ajustar el tamaño y la forma de las nanopartículas empleadas, e incluso las propiedades químicas del polímero, para evitar este problema.

De cualquier forma, los científicos han conseguido ya recrear de forma artificial una capacidad de autorreparación sorprendente. Según Wang: «Antes de nuestro trabajo, era muy difícil imaginar que este tipo de material flexible y conductor también pudiera autorrepararse.»

Una nueva piel artificial hará irrompibles los dispositivos electrónicos

Sensible al tacto

Los investigadores exploraron por último cómo usar este material como sensor. Los electrones que forman la corriente eléctrica en la superficie del material pasan a través de esta como si estuvieran cruzando un arroyo, saltando de piedra en piedra.

En esta analogía, las piedras serían las partículas de níquel. La distancia que separa dichas partículas determina la cantidad de energía que un electrón tendrá que liberar para saltar de una “piedra” a otra.

Torcer o ejercer presión sobre la piel sintética cambia la distancia entre las partículas de níquel y, por tanto, la facilidad con la que los electrones pueden moverse. Estos cambios sutiles en la resistencia eléctrica pueden traducirse en información sobre la presión y la tensión del material, que sería entonces a funcionar como la piel humana.

Según Tee, las pruebas realizadas han demostrado que el material es lo suficientemente sensible como para detectar, por ejemplo, la presión de un apretón de manos. Podría, por tanto, resultar útil para la fabricación de prótesis sensibles.

Además, el material es sensible no solo a presiones leves, sino también a la flexión, por lo que, aplicado a una extremidad protésica, esta podría registrar el grado de curvatura de cualquier articulación.

Tee señala asimismo otras posibilidades comerciales del material desarrollado. Dispositivos eléctricos o cables recubiertos con él podrían autorrepararse y conseguir que la electricidad fluyera de nuevo por ellos, sin necesidad de un mantenimiento costoso y complejo. Esto resultaría especialmente útil en lugares de difícil acceso, como el interior de las paredes de edificios o vehículos.

El siguiente objetivo del equipo, según Bao, será conseguir que este material sea elástico y transparente, de modo que pueda usarse para embalajes o para superponerlo a dispositivos electrónicos y pantallas de visualización.

Referencia bibliográfica:

Benjamin C-K. Tee, Chao Wang, Ranulfo Allen y Zhenan Bao, An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnology (2012) doi:10.1038/nnano.2012.192.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Ya es posible transmitir el tacto a través de Internet 26 junio, 2024
    Un nuevo estándar para la compresión y transmisión del sentido del tacto mediante Internet sienta las bases para la telecirugía, la teleconducción y nuevas experiencias de juego en línea, entre otras aplicaciones. El flamante estándar HCTI (Haptic Codecs for the Tactile Internet) es para el “tacto digital” lo que son JPEG, MP3 y MPEG para […]
    Pablo Javier Piacente
  • Las primeras muestras de la cara oculta de la Luna ya están en la Tierra 26 junio, 2024
    La cápsula de reingreso de la sonda Chang'e-6 de China, que transporta hasta dos kilogramos de materiales extraídos y perforados de la cuenca más antigua de la Luna ubicada en su lado oscuro, aterrizó este martes 25 de junio en la región de Mongolia Interior y fue rápidamente recuperada, según informó la Administración Nacional del […]
    Pablo Javier Piacente
  • La Tierra tendrá dos soles dentro de 1,3 millones de años y durante 60.000 años 26 junio, 2024
    Dentro de 1,3 millones de años, la Tierra tendrá una especie de segundo sol porque la estrella Gliese 710 se acercará a 1,1 años luz de la Tierra y la veríamos del mismo tamaño que Júpiter. Lo malo es que esa alteración cósmica puede provocar un episodio en nuestro planeta como el que acabó con […]
    Eduardo Martínez de la Fe
  • China descubre grafeno natural en la Luna 25 junio, 2024
    Investigadores chinos han descubierto recientemente grafeno natural de escasas capas por primera vez en la Luna, a partir de las muestras traídas a la Tierra por la sonda Chang'e 5. El hallazgo proporciona nuevos conocimientos sobre las actividades geológicas, la historia evolutiva y las características ambientales de la Luna.
    Pablo Javier Piacente
  • Los incendios forestales extremos se duplicaron en los últimos 20 años en todo el planeta 25 junio, 2024
    Una nueva investigación concluye que la frecuencia e intensidad de los incendios forestales extremos se ha más que duplicado en todo el mundo en las últimas dos décadas, debido al calentamiento global antropogénico y otros factores relacionados. Se trata de la primera ocasión en la cual los científicos pudieron trazar una tendencia global para los […]
    Pablo Javier Piacente
  • Detectado en el Mediterráneo el neutrino más energético del universo 25 junio, 2024
    El neutrino más potente jamás observado ha dejado su huella en las profundidades del Mediterráneo, aunque todavía se desconoce de qué rincón del universo procede. Los neutrinos cosmogénicos son los mensajeros de algunos de los eventos más cataclísmicos del cosmos.
    Eduardo Martínez de la Fe
  • La IA identifica seis formas diferentes de depresión 24 junio, 2024
    Los científicos han identificado seis formas biológicamente distintas de depresión gracias a la aplicación de la Inteligencia Artificial (IA) en estudios cerebrales. El hallazgo podría explicar por qué algunas personas no responden a los tratamientos tradicionales para la afección, como los antidepresivos y la terapia psicológica.
    Pablo Javier Piacente
  • La NASA pondrá en órbita una estrella artificial que revolucionará el estudio del Universo 24 junio, 2024
    La NASA encarará un ambicioso proyecto para colocar en órbita una estrella artificial: permitirá la calibración de telescopios a niveles previamente inalcanzables. El proyecto tiene como objetivo mejorar significativamente las mediciones de la luminosidad estelar y abordar varios otros desafíos que dificultan la astrofísica moderna.
    Pablo Javier Piacente
  • Los macacos nos enseñan cómo sobrevivir a un desastre natural 24 junio, 2024
    Los macacos de la isla caribeña de Puerto Rico se volvieron más tolerantes y menos agresivos después del huracán María, que los obligó a compartir la sombra de los árboles para sobrevivir al intenso calor.
    Redacción T21
  • Extrañas formas de vida se ocultan en antiguas cuevas de lava de Hawai 23 junio, 2024
    Científicos estadounidenses han logrado identificar una gran diversidad de especies microbianas únicas, que se han desarrollado en cuevas geotérmicas, tubos de lava y fumarolas volcánicas de la isla de Hawái. Estas estructuras subterráneas se formaron hace entre 65 y 800 años y reciben poca o ninguna luz solar, en ambientes similares a los que pueden encontrarse […]
    Pablo Javier Piacente