Tendencias21
Visualizan por vez primera la mecánica de las células

Visualizan por vez primera la mecánica de las células

Científicos de la Emory University de Estados Unidos han desarrollado un método que permite visualizar al detalle y medir los movimientos y las fuerzas mecánicas de la superficie de las células, a nivel molecular y a tiempo real. El avance, que combina la microscopía de fluorescencia con polímeros químicamente modificados, podría servir para detectar y tratar enfermedades relacionadas con las células, como el cáncer. También ayudará a explicar algunos misterios, como la capacidad de las células cardiacas de latir al unísono o las fuerzas mecánicas implicadas en la división celular. Por Yaiza Martínez.

Visualizan por vez primera la mecánica de las células

Científicos de la Emory University de Estados Unidos han desarrollado un método de visualización de los movimientos y las fuerzas mecánicas de la superficie de las células.

Según publica dicha Universidad en un comunicado este sistema, que ha proporcionado ya la primera visión detallada de dichas fuerzas a nivel celular y a tiempo real, podría ayudar en un futuro a la detección y el tratamiento de enfermedades relacionadas con las células, como el cáncer.

Uno de los autores de la investigación, el profesor de química biomolecular de la Emory University, Khalid Salaita, explica en dicho comunicado que gracias a su método ahora “se puede medir algo que nunca antes se había medido: la fuerza que las moléculas aplican a otras moléculas, a través de toda la superficie de las células vivas, mientras las células se mueven y realizan sus procesos corrientes”. Además, los investigadores han logrado observar estas fuerzas en una película con transcurso de tiempo.

Todo ha sido posible gracias a una técnica de sensor fluorescente, desarrollada por el propio Salaita en colaboración con los estudiantes Daniel Stabley, Carol Jurchenko y Stephen Marshall.

Salaita explica que “las células están constantemente tirando y empujando de su entorno, e incluso pueden comunicarse unas con otras a través de su mecánica. Una de las formas en que las células usan estas fuerzas se evidencia a partir de las características de la arquitectura de su tejido, pero si queremos comprender realmente cómo funcionan las células, debemos entender la mecánica celular a un nivel molecular”.

Para ello, en primer lugar es necesario medir la tensión aplicada en la superficie celular a receptores celulares específicos, añade el científico. Los receptores celulares son proteínas o glicoproteínas presentes, entre otros rincones celulares, en la membrana plasmática que engloba a las células.

Estas proteínas hacen posible la interacción de determinadas sustancias con los mecanismos del metabolismo celular. Por ejemplo, a los receptores se unen sustancias químicas llamadas moléculas señalizadoras, como las hormonas o los neurotransmisores, para desencadenar una serie de reacciones en el interior de las células.

Primera evidencia directa de las fuerzas celulares

Salaita y su equipo aplicaron su técnica a un receptor específico: el receptor del factor de crecimiento epidérmico o EFGR. Este receptor está implicado en la síntesis de ADN y la proliferación celular, y constituye una de las vías de señalización celular más estudiadas.

Los investigadores cartografiaron concretamente la tensión mecánica ejercida por el EGFR durante los estadios iniciales de la endocitosis, un proceso que consiste en la introducción por parte de la célula de moléculas grandes o partículas en una vesícula, que termina por desprenderse de la membrana para incorporarse al citoplasma.

El momento de la endocitosis registrado fue aquél en el que el receptor celular capta ligandos o señales extracelulares que se unen a los receptores celulares, posibilitando la comunicación celular.

Los resultados obtenidos de este registro demostraron que las células no absorben pasivamente estos ligandos, sino que tiran físicamente de ellos hacia su interior. Este hallazgo supone la primera evidencia directa de la aplicación de fuerza mecánica celular al inicio de la endocitosis.

Características de la técnica

La cartografía de las fuerzas mecánicas celulares resulta importante porque podría ayudar a diagnosticar y a tratar enfermedades relacionadas con los mecanismos celulares.

Por ejemplo, se sabe que las células cancerígenas no se mueven igual que las células normales, pero aún no está claro si esta diferencia es causa o efecto de la enfermedad.

Salaita explica que se sabe “que si el EGFR está hiperactivo, se puede producir el cáncer, y que una de las vías de activación del EGFR es a través de la captación de ligandos”. Por tanto, si se pudiera comprender bien cómo las fuerzas mecánicas de los EGFRs juegan un papel en el desarrollo de esta enfermedad, sería posible diseñar medicamentos destinados a modificar este proceso mecánico y, en consecuencia, a detenerla”.

Visualizan por vez primera la mecánica de las células

En los últimos años, se han desarrollado varios métodos para el estudio de los mecanismos de las fuerzas celulares, pero éstos han presentado importantes limitaciones. En el caso de uno de ellos, el de la ingeniería genética, es necesario agrietar y modificar las proteínas celulares, lo que conlleva cambios en el comportamiento de las células y, como consecuencia, resultados de investigación sesgados.

Por el contrario, la técnica desarrollada por los científicos de la Universidad de Emory es no-invasiva y no modifica las células. Además, para su aplicación sólo se necesita un microscopio de fluorescencia estándar, en cuyos dos extremos se sitúa un polímero flexible químicamente modificado.

Uno de los extremos del polímero lleva un sensor de fluorescencia activo que se une a un receptor de la superficie celular. El otro extremo está anclado químicamente a la platina del microscopio.

Cuando se produce una fuerza mecánica en la célula, el polímero se expande y la señal fluorescente de su sensor se activa, aumentando su brillo. La medición de la cantidad de luz fluorescente emitida permite conocer la cantidad de fuerza mecánica ejercida a nivel celular.

Grandes posibilidades

Esta nueva técnica hará posible la medición de las fuerzas mecánicas de cualquier proteína o molécula individual en la superficie celular, con una resolución espacial y temporal mayor de la alcanzada hasta ahora, señala Salaita.

Con ella, podrían desentrañarse por eso muchos de los misterios que plantean las células a la biología y a la química: podría saberse cómo avanzan las células cancerígenas cuando un tumor se expande, cómo están implicadas estas fuerzas en la división celular y en la respuesta inmune o podrían conocerse los mecanismos que permiten a grupos de células cardiacas latir al unísono.

Según Salaita: “nuestro método podría ser aplicado a casi cualquier receptor (celular), por lo que abre una vía para el estudio de las interacciones mecánicas y químicas de miles de receptores asociados a las membranas celulares de las superficies de prácticamente cualquier tipo de célula. Esperamos que la medición de las fuerzas celulares llegue a formar parte del repertorio estándar de técnicas bioquímicas utilizado por los científicos para estudiar los sistemas vivos”. Los resultados de esta investigación han aparecido detallados en la revista Nature Methods.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Samsung Haean: Las gafas inteligentes que revolucionarán la realidad aumentada en 2025 26 marzo, 2025
    ¿Te imaginas llevar un par de gafas que traduzcan idiomas en tiempo real, te guíen por la ciudad y hasta te ayuden a realizar pagos? Samsung está a punto de hacerlo posible con Haean, un revolucionario dispositivo que podría llegar al mercado antes de finalizar 2025.
    Redacción T21
  • Las cámaras con IA podrían lograr que los vehículos autónomos se masifiquen 26 marzo, 2025
    Una nueva tecnología de cámaras impulsadas por Inteligencia Artificial (IA) permitirá a los vehículos sin conductor reaccionar más rápido que un velocista olímpico, ver en 3D y hacer que la conducción autónoma sea más segura y asequible.
    Redacción T21
  • Filtración en Signal: ¿Un error humano o una negligencia tecnológica? 26 marzo, 2025
    La reciente filtración de conversaciones en Signal en el seno de la administración Trump expone los riesgos de usar herramientas de consumo para gestionar información clasificada. Esta crisis pone el foco en los protocolos de seguridad, la gestión de datos y la Ley de Registros Federales.
    Redacción T21
  • Descubren una firme y alarmante relación entre las bebidas azucaradas y el cáncer 25 marzo, 2025
    Un nuevo estudio ha hallado un vínculo alarmante entre las bebidas azucaradas y el cáncer oral: los científicos de la Universidad de Washington descubrieron que las mujeres que beben al menos un refresco azucarado por día parecen tener aproximadamente cinco veces más probabilidades de contraer cáncer de cavidad oral (OCC) que las mujeres que evitan […]
    Pablo Javier Piacente / T21
  • Elon Musk y Neuralink ya están patentando una aplicación de "telepatía" 25 marzo, 2025
    En los últimos meses, Elon Musk y su equipo en Neuralink se han referido a las capacidades del chip de interfaz cerebral de la compañía, The Link, como “Telepatía”. Neuralink incluso ha presentado una solicitud de marca comercial ante los organismos oficiales estadounidenses para reservar los nombres “Telepatía” y “Telekinesis”. ¿Ya tiene Neuralink el secreto […]
    Pablo Javier Piacente / T21
  • Desarrollan la pantalla LED más pequeña del mundo: tiene el tamaño de un virus 25 marzo, 2025
    Investigadores de la Universidad de Zhejiang en Hangzhou, China, en colaboración con la Universidad de Cambridge, han creado una pantalla LED con píxeles que miden solo 90 nanómetros de ancho, un tamaño comparable al de los virus típicos. 
    Redacción T21
  • La revolución de la inteligencia artificial: ¿la era del fin del trabajo humano? 25 marzo, 2025
    La IA ha cruzado un umbral crítico: pronto podríamos ver sistemas autónomos capaces de realizar tareas humanas complejas, de semanas de duración, realizadas en apenas horas, cambiando para siempre el mercado laboral y la sociedad.
    Redacción T21
  • ¿Por qué no recordamos nada de cuando éramos bebés? 25 marzo, 2025
    El enigma de la memoria infantil parece comenzar a resolverse: una nueva investigación muestra que los bebés pueden codificar recuerdos específicos, sugiriendo que la “amnesia infantil” que nos impide recordar la etapa más temprana de la vida podría ser un problema de recuperación de memoria.
    Redacción T21
  • Todos los robots en todas partes: la era de la robótica generalista ha llegado 25 marzo, 2025
    Nos dirigimos a pasos acelerados a un mundo en el que conviviremos y seremos asistidos por robots humanoides E-AGI, que se ocuparán de muchas de las tareas de trabajadores humanos. Será un reto para nuestro actual sistema legislativo, policial y jurídico.
    Alejandro Sacristán
  • Los humanos modernos provienen de una combinación de linajes genéticos 24 marzo, 2025
    Una nueva investigación muestra que nuestros orígenes evolutivos son más complejos de lo pensado y no provienen de un único linaje, involucrando diferentes grupos que se desarrollaron por separado durante más de un millón de años, y luego se combinaron para formar la especie humana moderna.
    Pablo Javier Piacente / T21