Tendencias21

Bacterias y arqueas se transfieren electrones a distancia

Las bacterias y las arqueobacterias se transfieren electrones entre sí a distancia, para colaborar en la absorción de metano en el fondo del mar. Es la primera vez que se observa transferencia directa de electrones entre especies fuera del laboratorio.

Bacterias y arqueas se transfieren electrones a distancia

La buena comunicación es crucial para cualquier relación, especialmente cuando sus integrantes están separados por la distancia. También es así para los microbios de las profundidades del mar, que deben trabajar juntos para consumir grandes cantidades de metano liberado de los respiraderos en el suelo marino.

Trabajos recientes realizados en el Instituto de Tecnología de California (Caltech, EE.UU.) han demostrado que estos socios microbianos pueden realizar esta tarea incluso cuando no están en contacto directo con otros, mediante el uso de electrones para compartir la energía a través de largas distancias.

Esta es la primera vez que se documenta un transporte de electrones directo -movimiento de electrones de una célula, a través del entorno externo, a otro tipo de célula- en microorganismos de la naturaleza. Los resultados se han publicado en la revista Nature.

«Nuestro laboratorio está interesado en las comunidades microbianas del medio ambiente y, en concreto, en la simbiosis -o relación mutuamente beneficiosa- entre los microorganismos que les permite catalizar reacciones que no serían capaces de hacer por su cuenta», dice en la información de Caltech la profesora de Geobiología Victoria Orphan, que ha dirigido el estudio.

Durante las últimas dos décadas, el laboratorio de Orphan se ha centrado en la relación entre una especie de bacterias y una especie de arqueobacterias que viven en agregados simbióticos, consorcios, dentro de filtraciones de metano en aguas profundas. Los organismos trabajan juntos en sintrofía (que significa «alimentar juntos») para consumir hasta el 80 por ciento del metano emitido desde el suelo del océano, metano que de otra manera podría terminar contribuyendo al cambio climático como un gas de efecto invernadero en nuestra atmósfera.

Anteriormente, Orphan y sus colegas contribuyeron al descubrimiento de esta simbiosis microbiana, una asociación de cooperación entre arqueas llamadas metanótrofos metano-oxidantes anaerobios (o «comedores de metano») y una bacteria sulfato-reductora (organismos que pueden «respirar» sulfato en lugar de oxígeno) que permite que estos organismos consuman metano usando sulfato del agua de mar. Sin embargo, no estaba claro cómo comparten energía estas células e interactúan dentro de la simbiosis para realizar esta tarea.

Debido a que estos microorganismos crecen lentamente (se reproducen sólo cuatro veces al año) y viven en estrecho contacto entre sí, ha sido difícil para los investigadores aislarlos del entorno para que cultivarlos en el laboratorio. Así, el equipo de Caltech utilizó un sumergible de investigación, llamado Alvin, para recoger muestras que contenían consorcios microbianos metano-oxidantes de los sedimentos filtrados en las profundidades del océano, que los trajo de vuelta al laboratorio para su análisis.

Los investigadores utilizaron diferentes manchas de ADN fluorescente para marcar los dos tipos de microbios y ver su orientación espacial en los consorcios. En algunos consorcios, Orphan y sus colegas encontraron que las células bacterianas y las arquea se mezclaban bien, mientras que en otros consorcios, las células del mismo tipo se agrupaban en áreas separadas.

Orphan y su equipo se preguntaron si la variación en la organización espacial de las bacterias y arqueas dentro de estos consorcios influía en su actividad celular y en su capacidad para consumir metano de forma cooperativa. Para averiguarlo, aplicaron un isótopo estable «trazador» para evaluar la actividad metabólica.

Luego se midió la cantidad del isótopo absorbida por las células arqueas y bacterianas individuales dentro de sus «vecindades» microbianas, en cada uno de los consorcios, con un instrumento de alta resolución llamado espectrométro de masas de iones secundarios nanoescala (NanoSIMS). Esto permitió a los investigadores determinar cómo de activos eran los compañeros arqueas y bacterias en relación a su distancia entre sí.

Para su sorpresa, los investigadores encontraron que la disposición espacial de las células en los consorcios no tenía influencia en su actividad. «Como se trata de una relación sintrófica, habríamos pensado que las células de la interfaz- donde las bacterias están en contacto directo con el arqueas- serían más activas, pero en realidad no vemos una tendencia evidente. Lo que es realmente notable es que hay células que están a muchas longitudes celulares de distancia de su socio más cercano y que siguen activas», dice Orphan.

Estadística

Para averiguar cómo se asociaban las bacterias y las arqueas, los co-autores Grayson Chadwick, estudiante de posgrado en geobiología en Caltech y ex investigador en laboratorio de Orphan, y Shawn McGlynn, un ex investigador postdoc, emplearon estadísticas espaciales para buscar patrones en la actividad celular de varios consorcios con diferentes estructuras de células.

Encontraron que las poblaciones de arqueas y bacterias sintróficas de los consorcios tenían niveles similares de actividad metabólica: cuando una población tenía una alta actividad, los microorganismos compañeros asociados también eran igualmente activos, algo consistente con una simbiosis beneficiosa.

Sin embargo, una mirada cercana a la organización espacial de las células reveló que ninguna disposición particular de los dos tipos de organismos, ya fuera dispersión uniforme, o en grupos separados, estaba correlacionada con la actividad de las células.

Para determinar cómo estaban teniendo lugar estas interacciones metabólicas incluso a través de distancias relativamente largas, el coautor Chris Kempes, modeló la relación predicha entre la actividad celular y la distancia entre los socios sintróficos que dependen de la difusión molecular de un sustrato.

Encontró que los metabolitos convencionales -moléculas de las que antes se pensaba que participaban en este consumo sintrófico de metano, como el hidrógeno- eran inconsistentes con los patrones de actividad espacial observados en los datos. Sin embargo, los modelos revisados ​​indicaron que los electrones podían probablemente hacer viajes de célula a célula a través de grandes distancias.

«Chris desarrolló un modelo generalizado para la sintrofía metano-oxidante basado en la transferencia directa de electrones, y los resultados del modelo encajaban mejor con nuestros datos empíricos», dice Orphan. «Apuntó la posibilidad de que estas arqueas estuvieran transfiriendo directamente electrones derivados del metano al exterior de la célula, y los electrones se estuvieran pasando a las bacterias directamente.»

Guiados por esta información, Chadwick y McGlynn buscaron evidencia independiente para apoyar la posibilidad de la transferencia de electrones directa entre especies. Bacterias cultivadas, como las del género Geobacter, son organismos modelo del proceso de transferencia directa de electrones. Estas bacterias utilizan en su superficie exterior grandes proteínas, llamadas citocromos multi-hemo, que actúan como «cables» conductores para el transporte de electrones.

Usando análisis del genoma, junto con microscopía electrónica de transmisión y una mancha que reacciona con estos citocromos multi-hemo, los investigadores mostraron que estas proteínas conductoras también estaban presentes en la superficie exterior de las arqueas que estaban estudiando. Y ese hallazgo, dice Orphan, puede explicar por qué la disposición espacial de los socios sintróficos no parece afectar a su relación o actividad.

«Realmente es uno de los primeros ejemplos de transferencia de electrones directa entre especies que se produce entre microorganismos no cultivados, del medio ambiente. Nuestra impresión es que esto es más común de lo que se cree», dice.

Orphan considera que lo que han aprendido acerca de esta relación ayudará a avanzar en el conocimiento de las interacciones entre especies microbianas en la naturaleza.

Comunidades lejanas

Hace unos meses, investigadores de la Universidad de Hawái en Manoa (EE.UU) y colegas de otras instituciones descubrieron que las comunidades microbianas de diferentes regiones del Océano Pacífico muestran ritmos diarios sorprendentemente similares en su metabolismo a pesar de habitar hábitats extremadamente diferentes: las aguas ricas en nutrientes de California y las aguas pobres en nutrientes al norte de Hawái.

Además, en ambos lugares, los fotoautótrofos dominantes -bacterias amantes-de-la-luz que necesitan energía solar para ayudarles a producir alimentos mediante la fotosíntesis, a partir de sustancias inorgánicas- parecen iniciar un efecto de cascada en el que los otros grupos principales de microbios realizan sus actividades metabólicas de forma coordinada y predecible.

Referencia bibliográfica:

Shawn E. McGlynn, Grayson L. Chadwick, Christopher P. Kempes, Victoria J. Orphan. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature (2015). DOI: 10.1038/nature15512.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren un helecho tropical que transforma sus hojas muertas en nuevas raíces 9 febrero, 2024
    Para sobrevivir en el suelo anegado y bajo en nutrientes del bosque de Quebrada Chorro, en el oeste de Panamá, una especie de helecho tropical arborescente reutiliza sus hojas muertas, convirtiéndolas en nuevas raíces. Los científicos descubrieron que el helecho reconfigura estas “hojas zombis”, invirtiendo el flujo de agua para atraer nutrientes de regreso a […]
    Pablo Javier Piacente
  • Descubren una extraña combinación de minerales en las muestras lunares de la misión Chang'e-5 de China 9 febrero, 2024
    Los minerales antiguos y nuevos identificados en las muestras lunares traídas por la misión Chang'e-5 de China están ayudando a los científicos a comprender mejor la historia de la Luna: ahora, los especialistas han descubierto más propiedades del sexto nuevo mineral lunar, llamado Changesite-(Y). Además, otros compuestos hallados, la seifertita y la stishovita, pueden coexistir […]
    Pablo Javier Piacente
  • Los robots que atienden a pacientes llegan a los hospitales 9 febrero, 2024
    Robots diseñados para brindar comodidad a los pacientes de edad avanzada y aliviar su ansiedad, han sido probados con éxito en un hospital de París: saludan, responden a preguntas, comprenden conversaciones grupales y apoyan las tareas de enfermería.
    Redacción T21
  • Una pequeña luna de Saturno parecida a la “Estrella de la Muerte” de Star Wars contiene un océano oculto 8 febrero, 2024
    Por debajo de la superficie repleta de cráteres de Mimas, una de las lunas más pequeñas de Saturno, se esconde un océano global de agua líquida de reciente formación. El satélite posee tan sólo unos 400 kilómetros de diámetro y presenta un notable parecido con la “Estrella de la Muerte”, una estación espacial imperial que […]
    Pablo Javier Piacente
  • Logran controlar un objeto virtual con la mente durante un sueño lúcido 8 febrero, 2024
    Un grupo de participantes en un nuevo estudio científico logró manejar un vehículo virtual a través de un avatar únicamente con su mente, mientras sus cerebros permanecían en la fase REM del sueño. Además de profundizar en los misterios de la consciencia humana, la innovación podría facilitar el acceso a nuevos desarrollos tecnológicos, como un […]
    Pablo Javier Piacente
  • Un proyecto global trabaja para crear de forma colaborativa un cerebro robótico general 8 febrero, 2024
    El auge de la inteligencia artificial generativa impulsa un proyecto global que trabaja para crear un cerebro robótico general, capaz de generar androides como los que hemos visto hasta ahora solo en la ciencia ficción. Pero es cuestión de tiempo que convivamos con ellos en perfecta armonía. Ya no es una utopía.
    Eduardo Martínez de la Fe
  • La IA está capacitada para resolver dilemas morales cuando conduce vehículos autónomos 8 febrero, 2024
    Los sistemas de IA muestran significativas similitudes éticas con las reacciones humanas ante dilemas morales, lo que los acreditan para conducir vehículos autónomos tal como lo harían las personas.
    Redacción T21
  • Los huracanes se están volviendo tan fuertes que ya no existen categorías para clasificarlos 7 febrero, 2024
    Cinco tormentas en la última década tuvieron velocidades de viento que pertenecen a una hipotética categoría 6 en la escala de huracanes Saffir-Simpson: el fenómeno obligaría a los científicos a crear una nueva clasificación, capaz de reflejar la virulencia de los huracanes en la actualidad. Las causas principales del fenómeno tienen su origen en el […]
    Pablo Javier Piacente
  • Un asteroide habría explotado sobre la Antártida hace unos 2,5 millones de años 7 febrero, 2024
    Un asteroide se desintegró sobre el continente antártico hace aproximadamente 2,5 millones de años: la evidencia proviene de un análisis químico de más de 100 pequeños trozos de roca extraterrestre, que se han preservado dentro de las enormes capas de hielo. Hasta el momento, solo se conocen otros dos eventos de explosiones aéreas antiguas en […]
    Pablo Javier Piacente
  • Crean la primera niña de inteligencia artificial del mundo 7 febrero, 2024
    La primera niña IA del mundo ha sido creada por científicos chinos, que la han dotado de emociones e intelecto y de la capacidad de aprender de forma autónoma. Se comporta como si tuviera tres o cuatro años y representa un avance significativo para el campo de la inteligencia artificial general.
    Redacción T21