Tendencias21

Descubren cómo nos protege el cerebro mientras dormimos

Neurólogos franceses han descubierto cómo el cerebro nos protege mientras dormimos: han identificado a las neuronas que impiden la agitación nocturna por efecto de los sueños. Este resultado ayudará a tratar la parasomnia y a prevenir el Parkinson, al mismo tiempo que desvela cómo se generan los sueños.

Descubren cómo nos protege el cerebro mientras dormimos

Neurólogos franceses han descifrado completamente los circuitos neuronales responsables de la parálisis muscular que ocurre durante el sueño paradójico, la fase del sueño en la que los ojos se mueven rápidamente. Ese momento se llama sueño REM (Rapid Eye Movement) y es el que nos mantiene relajados, aunque es relativamente fácil que alguien nos despierte.

El descubrimiento es importante sobre todo para comprender algunos trastornos neurológicos caracterizados por una agitación nocturna violenta e incontrolada, debido a que la parálisis muscular asociada a al sueño paradójico no se produce por una anomalía en la comunicación neuronal.

Estos trastornos motores que ocurren durante el sueño paradójico o REM se perfilan como un marcador diagnóstico precoz de la enfermedad de Parkinson, lo que demuestra el estrecho vínculo que existe entre estas dos patologías. La nueva investigación permite descifrar esta relación y ayudará a tratar ambas enfermedades.

Asimismo, este resultado ayudará a entender mejor cómo se generan los sueños en el cerebro y puede despejar la vieja pregunta de para qué sirven los sueños, según explican los investigadores en un comunicado. Los resultados se publican en Nature Communications.

Desde los años cincuenta del siglo pasado se sabe que durante la fase REM del sueño, el cuerpo registra una parálisis muscular que impide cualquier movimiento intempestivo durante el descanso nocturno.

En un estudio publicado el año pasado, estos mismos neurólogos habían descubierto las neuronas que inician el fenómeno de la parálisis del sueño. En este nuevo estudio, han identificado las neuronas que suprimen la actividad muscular durante el descanso nocturno y comprobado  que estas neuronas inhibidoras se localizan dentro de la médula ventromedial (vmM), en lugar de dentro de la médula espinal.

Lo han conseguido manipulando una población de neuronas medulares (GiV) del cerebro de una rata, a las que introdujeron vectores virales modificados genéticamente. Una vez implementados en las células cerebrales, estos virus bloquearon la expresión de un gen que permite la secreción sináptica de los neurotransmisores inhibidores.

Al no poder secretar, esta población de neuronas se quedó incomunicada de la red cerebral necesaria para provocar la parálisis corporal: aunque dormidas profundamente, las ratas del experimento no quedaron paralizadas durante el sueño paradójico, por lo que manifestaban movimientos anormales y variados que se supone reflejaban sus sueños.

Llegando al origen de los sueños

Este comportamiento anómalo recuerda el cuadro clínico de pacientes que sufren parasomnia, un trastorno de la conducta durante el sueño asociado con episodios breves o parciales de despertar, sin que se produzca una interrupción importante del sueño ni una alteración del nivel de vigilia diurno.

Una de las formas de parasomnia se llama REM Sleep Behavior Disorder (RBD) y se manifiesta generalmente en personas que tienen ya los cincuenta años de edad, si bien su origen se desconoce completamente. Sus síntomas son similares a los expresados por las ratas del experimento.

La nueva investigación puede arrojar luz sobre esta enfermedad, aunque va mucho más allá de haber conseguido un modelo preclínico de esta parasomnia. También puede tener una importancia capital para el estudio de otras enfermedades neurodegenerativas.

Recientes investigaciones han demostrado que pacientes diagnosticados con RBD desarrollan casi sistemáticamente los síntomas motores de la enfermedad de Parkinson, de media una década después de la aparición de esta forma de parasomnia.

Por eso, los investigadores se proponen desarrollar un modelo animal que evoluciona desde la parasomnia al Parkinson, con la finalidad de comprender mejor los orígenes cerebrales de la degeneración neuronal.

Por último, esta investigación permite acceder a los sueños percibidos por el animal durante el descanso y acometer nuevas investigaciones para comprender mejor los orígenes y las funciones psicológicas, cognitivas y psicológicas relacionadas con el sueño, algo que intriga a la ciencia desde el principio de los tiempos humanos.

Referencia

Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behavior disorder. Sara Valencia Garcia et alia. Nature Communications, Volume 9, Article number: 504 (2018). doi:10.1038/s41467-017-02761-0
 

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Los materiales tienen memoria y podemos aprovecharla 17 febrero, 2025
    Los científicos han descubierto una nueva forma en que los materiales pueden crear "recuerdos" sobre aquello que les sucedió en el pasado, desarrollando originales y emocionantes posibilidades en la informática y la ingeniería mecánica.
    Redacción T21
  • Podemos comprender oraciones escritas en un parpadeo 16 febrero, 2025
    Nuestro cerebro puede entender oraciones escritas en lo que dura el parpadeo de un ojo, según revela un nuevo estudio. Los científicos descubrieron que el procesamiento del lenguaje escrito ocurre a velocidades significativamente más rápidas de las necesarias para hablar o comunicarse en voz alta.
    Pablo Javier Piacente
  • Un misterioso pulso marca la música del corazón de la Vía Láctea 15 febrero, 2025
    El corazón de nuestra galaxia late con una señal misteriosa: cada 76 minutos, como un reloj, el flujo de rayos gamma de Sagitario A*, el agujero negro supermasivo ubicado en el corazón de nuestra galaxia, fluctúa por una razón aún no definida. Según los investigadores, es similar en periodicidad a los cambios en la emisión […]
    Pablo Javier Piacente
  • Las ganas de postre surgen en el cerebro cuando hemos comido bien 14 febrero, 2025
    Los investigadores demostraron que un grupo de células nerviosas, denominadas neuronas POMC, son las responsables de mantener nuestras ganas de comer postre, a pesar de haber disfrutado de un almuerzo o una cena suculenta que nos ha saciado. En roedores y humanos, estas neuronas se activan tan pronto como se tiene acceso al azúcar, facilitando […]
    Pablo Javier Piacente / T21
  • ¿ChatGPT reemplazará a los psicoterapeutas en el futuro? 14 febrero, 2025
    Los científicos descubrieron que las respuestas producidas por el popular sistema ChatGPT eran generalmente mejor valoradas que las entregadas por un psicólogo humano en el marco de una situación de terapia de pareja: eran más largas y contenían más sustantivos y adjetivos, aportando una mayor contextualización.
    Pablo Javier Piacente / T21
  • Una bacteria podría resolver los crímenes ligados a agresiones sexuales 14 febrero, 2025
    Una especie bacteriana única, conocida como “sexoma”, se transfiere entre individuos durante las relaciones sexuales. Estas firmas microbianas podrían servir como evidencia forense, incluso cuando no existan marcadores de ADN tradicionales, transformándose en una herramienta clave para la resolución de delitos que involucren agresiones sexuales.
    Redacción T21
  • ¿Será capaz Europa de subirse al tren de la Inteligencia Artificial? 14 febrero, 2025
    Europa va a invertir 309.000 millones de euros en Inteligencia artificial, muy lejos de los 500.000 euros que se propone Estados Unidos, mediante una iniciativa público-privada que parece más un ideal que un plan de acción realista. De momento.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Descubren el lugar exacto dónde la vida comenzó a desarrollarse en la Tierra primitiva 13 febrero, 2025
    Científicos estadounidenses concluyen en un nuevo estudio que los primeros microorganismos que se adaptaron de un entorno prehistórico con poco oxígeno al que existe en la actualidad lo lograron en ambientes semejantes a los enormes géiseres del actual Parque Nacional de Yellowstone, ubicado en el oeste de Estados Unidos, hace aproximadamente 2.400 millones de años.
    Pablo Javier Piacente / T21
  • Comprobado en ratones: el estrés intensivo provoca sordera 13 febrero, 2025
    Los resultados de un nuevo estudio muestran que el estrés repetido podría cambiar la forma en que percibimos y respondemos al mundo que nos rodea: en roedores, los científicos comprobaron que se producen cambios en la forma en que el cerebro procesa el sonido, disminuyendo la capacidad para percibir los ruidos más intensos.
    Pablo Javier Piacente / T21
  • El neutrino que atravesó el Mediterráneo abre una nueva ventana energética al Universo 13 febrero, 2025
    Los científicos afirman que la fuente de una partícula de alta energía que atravesó el mar Mediterráneo en 2023 es todavía un enigma, abriendo un escenario desconocido de la energía cósmica. El destello de luz identificado a 3,5 kilómetros de profundidad ha dejado ver la presencia de un visitante cósmico sin precedentes: un neutrino con […]
    Redacción T21