Tendencias21
Descubren la última frontera del tiempo

Descubren la última frontera del tiempo

La última frontera del tiempo se encontraría en las profundidades del mundo cuántico: el tiempo tendría un periodo fundamental que integra su carácter universal y relativo. No es solo una coordenada, sino también una vibración física detectable por un reloj cuántico.

El tiempo es la magnitud física que mide la duración temporal de los acontecimientos: permite ordenar los sucesos en secuencias, estableciendo un presente, un pasado y un futuro para todo lo que existe.

La relatividad añade algo de complejidad a este sencillo razonamiento: la medida del tiempo no siempre es igual, ya que depende del movimiento de cada observador.

El ejemplo más claro es el experimento imaginario establecido por el físico Paul Langevin: dos hermanos gemelos que se separan, porque uno de ellos realiza un viaje espacial a una velocidad cercana a la de la luz, cuando regresa es más joven que el que se quedó en tierra.

El gemelo que se queda envejece más porque el reloj del gemelo de la nave espacial va más lento: el tiempo transcurre más despacio cuando se viaja a la velocidad de la luz. El tiempo, por tanto, es relativo.

Pero la complejidad no termina ahí: según la física cuántica, el tiempo está en una superposición de estados en la que pasado, presente y futuro se funden, y en la que los procesos de causa y efecto se invierten. Pero es el mismo para todos estos procesos.

Midiendo el tiempo

Los seres humanos llevamos midiendo el tiempo alrededor de cinco mil años y para conseguirlo, hemos ideado diversos sistemas, desde el reloj de arena y los relojes de agua, hasta los cronómetros y los relojes digitales.

En la cúspide de esta escalada por atrapar y medir el tiempo están los relojes atómicos, que miden cómo transcurre en procesos tan básicos de la materia como la resonancia atómica.

En vez de un péndulo para medir la duración de la oscilación, los relojes atómicos trabajan con la frecuencia con la que ocurren cambios en los átomos. Estos relojes han establecido un nuevo patrón para la definición de la unidad de tiempo físico: el Tiempo Atómico Internacional.

Los relojes atómicos, que solo pueden desviarse un segundo cada 30.000.000 años, miden las ondas electromagnéticas necesarias para cambiar una propiedad de los átomos de cesio llamada espín.

La última frontera

Una nueva evolución en el proceso de medir el tiempo se consiguió con el así llamado reloj cuántico: aumenta la precisión porque mide los cambios de estado de un átomo de aluminio cargado eléctricamente.

Es como un reloj atómico doméstico que solo atrasa un segundo cada 3.700 millones de años y puede detectar minúsculas variaciones todavía teóricas, como las que supuestamente ocurren en la velocidad de la luz cuando está en el vacío.

Ahora, tres físico-teóricos de la Universidad Estatal de Pensilvania han calculado el límite máximo, la última frontera, a partir de la cual puede ser medida la fracción mínima de tiempo en un reloj cuántico.

Su propuesta, formulada en la revista Physical Review Letters, se basa en el cálculo de lo que podría determinar un reloj cuántico: establece que el período de tiempo que puede medir un reloj cuántico en el universo es como máximo 10 ^ –33 segundos.

Evolución conceptual

Se trata de una predicción teórica aportada por Garrett Wendel, Luis Martínez y Martin Bojowald que implica una evolución en la forma de entender el tiempo físico.

Según la relatividad, lo que permite a los hermanos gemelos alcanzar en algún momento edades diferentes es que el tiempo, aunque es una cantidad continua, puede moverse más lento o más deprisa según la velocidad.

Para la mecánica cuántica, sin embargo, el tiempo es constante y universal, a pesar de sus paradójicas características: se desarrolla como los fotogramas de una película, en forma de pequeñas unidades de tiempo indivisibles basadas en el intervalo temporal más pequeño físicamente significativo (tiempo de Planck).

La nueva investigación aporta una nueva idea que podría resolver la aparente contradicción entre el tiempo relativista y cuántico: el tiempo no es solo una coordenada, sino también una vibración física suficientemente rápida que puede medirse.

Plantea que un reloj universal que funcione en una unidad de tiempo muy pequeña podría medir el tiempo constante en todo el universo (tiempo cuántico), a la vez que podría incorporar las variaciones de velocidad. En el caso de los gemelos, no habría dos medidas diferentes de tiempo.

Oscilador cuántico

Su teoría se basa en un reloj universal que sería un oscilador cuántico: salta regularmente entre sus dos estados o momentos.

El tiempo que invierte el oscilador cuántico en esos saltos se deduce al comparar sus ritmos con los de un reloj atómico.

La diferencia entre ambas medidas es lo que determina que el tiempo tiene, teóricamente, un periodo fundamental, señalan los investigadores. Ese periodo fundamental sería la base mínima del tiempo universal.  La última frontera del tiempo.

Sin embargo, para comprobar que el tiempo tiene realmente un período fundamental, será necesario confirmar el cálculo teórico de la medida aportada por este equipo. Detectarlo físicamente llevará todavía mucho… tiempo, advierte APS Physics.

 

Referencia

Physical Implications of a Fundamental Period of Time. Garrett Wendel, Luis Martínez, and Martin Bojowald. Phys. Rev. Lett. 124, 241301. 19 June 2020. DOI:https://doi.org/10.1103/PhysRevLett.124.241301

Eduardo Martínez de la Fe

Eduardo Martínez de la Fe, periodista científico, es el Editor de Tendencias21.

Hacer un comentario

RSS Lo último de Tendencias21

  • Sigue la búsqueda del cerebro de Albert Einstein 3 noviembre, 2022
    Partes del cerebro de Einstein, dividido luego de su fallecimiento en 1955, siguen desaparecidas: su hallazgo sería crucial para determinar finalmente si el cerebro del genial físico era diferente al del resto de los mortales y por qué.
    Pablo Javier Piacente
  • Un nuevo cohete chino fuera de control amenaza a la Tierra 3 noviembre, 2022
    China permitirá una vez más que un cohete fuera de control caiga del cielo, concretamente este 4 de noviembre: no es la primera vez que una etapa del cohete Long March 5B puede caer sobre un área poblada. La estructura, de 21 toneladas métricas, ha comenzado un reingreso descontrolado y potencialmente peligroso a la atmósfera […]
    Pablo Javier Piacente
  • La reproducción en ratones responde a criterios de calidad neuronal y la agresión a la cantidad 3 noviembre, 2022
    El cerebro del ratón dispone de una puerta que regula la activación de neuronas según se precise aparearse con una hembra o atacar a otro macho: en el primer caso opta por la calidad, en el segundo por la cantidad de neuronas implicadas.
    Eduardo Martínez de la Fe
  • Explican científicamente por qué los gatos tienen siete vidas 3 noviembre, 2022
    Una combinación de la reducción de la velocidad de aterrizaje debido a la aerodinámica, de las propiedades de resorte de sus patas y de la relación entre la masa corporal y el diámetro de sus huesos, le dan al gato las siete vidas que se le atribuyen.
    N+1/T21
  • Los colores que vemos viven en nuestros ojos, nuestro cerebro, nuestra cultura y el entorno 2 noviembre, 2022
    El color está en los ojos y el cerebro del espectador: la forma en que vemos y describimos los tonos varía ampliamente entre las personas por múltiples razones. Según un nuevo estudio, estas variaciones están determinadas por variables como nuestra estructura ocular individual, la forma en que nuestro cerebro procesa las imágenes, qué idioma hablamos […]
    Pablo Javier Piacente
  • Los agujeros negros en estado cuántico rompen los límites de lo extraño 2 noviembre, 2022
    El Universo nos está revelando que siempre es más extraño, misterioso y fascinante de lo que la mayoría de nosotros podríamos haber imaginado: un nuevo estudio ha descubierto que los agujeros negros, afectados por el fenómeno de superposición cuántica, pueden tener masas muy diferentes al mismo tiempo: extrapolando esta idea a una persona, significaría que […]
    Pablo Javier Piacente
  • Pistas químicas resuelven uno de los misterios de los violines Stradivarius 2 noviembre, 2022
    Unas pistas químicas han resuelto uno de los misterios que convierten a los Stradivarius en los mejores violines del mundo: la madera contiene un tratamiento a base de proteínas que podría influir en el sonido del instrumento, dándole su inconfundible claridad.
    CERIC/T21
  • Las matemáticas descubren cuál es la mejor defensa para un equipo de fútbol 2 noviembre, 2022
    Físicos argentinos han desarrollado un modelo informático fabricado con imágenes reales de partidos de fútbol que calcula la mejor defensa para un equipo: lo que marca la diferencia no es la cooperación para los pases, sino la distancia entre los jugadores.
    N+1/T21
  • Identifican en Marte el impacto de meteorito más grande registrado en el Sistema Solar 1 noviembre, 2022
    Un seismo que sacudió el planeta rojo en 2021 fue el resultado del impacto de un meteorito masivo, según revelaron los científicos de la NASA. Se trata del impacto de meteorito más grande registrado hasta hoy en todo el Sistema Solar: el cráter producido mide 150 metros de ancho y 21 metros de profundidad. Al […]
    Pablo Javier Piacente
  • Descubren un enorme asteroide potencialmente peligroso para la Tierra 1 noviembre, 2022
    Un asteroide cercano y potencialmente peligroso es el más grande identificado en los últimos 8 años, según los investigadores. Con casi un kilómetro y medio de ancho, desarrolla una órbita que, en el futuro, podría acercarlo lo suficiente a la Tierra como para plantear un grave problema y poner a prueba los sistemas de defensa […]
    Pablo Javier Piacente