Tendencias21
Descubren que los electrones pueden imitar un campo magnético que no existe

Descubren que los electrones pueden imitar un campo magnético que no existe

Los ordenadores cuánticos están ahora más cerca. Un equipo internacional de físicos ha conseguido reproducir el Efecto Hall cuántico, que permite mover electrones para aprovechar así las cualidades de su espín y de su movimiento en computación, sin necesidad de temperaturas extremadamente bajas ni de campos magnéticos intensos, principales obstáculos para la fabricación de ordenadores de la próxima generación. Utilizando una novedosa técnica, basada en un acelerador y un bloque de antimonio y bismuto, los investigadores consiguieron que los electrones de dicho bloque se movieran como si estuvieran sometidos a un campo magnético, aunque sin estarlo. Nuevos diseños computacionales podrán aprovechar este avance. Por Yaiza Martínez.

Descubren que los electrones pueden imitar un campo magnético que no existe

Un equipo internacional de científicos liderado por investigadores de la Universidad de Princeton, en Estados Unidos, ha descubierto que en la superficie de ciertos materiales las disposiciones colectivas de electrones pueden moverse como si imitaran la presencia de un campo magnético, aunque este campo no se encuentre presente.

Este movimiento constatado refleja uno de los fenómenos cuánticos más exóticos de la física de la materia condensada, el del efecto Hall cuántico. Hasta el momento, los científicos habían observado el efecto Hall cuántico en movimientos similares de electrones, pero estando éstos sometidos a campos magnéticos muy intensos y a muy bajas temperaturas.

El descubrimiento podría, además, allanar el camino hacia la fabricación de ordenadores cuánticos con la flexibilidad de operar a temperaturas moderadas, en contraposición a las bajas temperaturas estándar requeridas para los actuales dispositivos informáticos más potentes, informa la National Science Foundation (patrocinadora de la investigación) de Estados Unidos en un comunicado.

Obstáculos para la computación cuántica

El efecto Hall cuántico es un fenómeno exclusivo de ciertos materiales electrónicos, y supone que electrones obligados a moverse en las dos dimensiones de un plano, en presencia de un campo magnético potente y a temperaturas próximas al cero absoluto (-273°C), generen un voltaje que no aumenta proporcionalmente con la intensidad del campo, sino que lo hace a saltos o escalones.

Los valores de esos saltos de voltaje serían submúltiplos (es decir, 1/5, 1/4, 1/3, 1/2) de un voltaje fundamental relacionado con la constante cuántica de Planck y la carga del electrón.

Pero la utilidad del efecto Hall cuántico fraccionario para la electrónica cuántica (que permitiría producir un “tejido” que serviría para preservar información en el registro de las partículas) ha resultado improbable hasta ahora, dadas las bajísimas temperaturas y elevados campos magnéticos necesarios para su generación. Sin embargo, las cosas pueden cambiar.

Campo magnético fantasma

Hace algún tiempo, teóricos de la Universidad de Pennsylvania y de la Universidad de California en Berkeley propusieron que en ciertos materiales tridimensionales, las disposiciones colectivas de electrones podrían moverse para generar el efecto Hall cuántico, sin necesidad de potentes campos magnéticos o temperaturas demasiado bajas. Pero, para que esto ocurriera, señalaron entonces los científicos, los electrones deberían moverse a velocidades extremadamente elevadas.

Ahora, el físico de la Universidad de Princeton, Zahid Hasan, en colaboración con otros físicos de Estados Unidos, Suiza y Alemania, ha observado que los espines (momentos angulares de los electrones) de muchos electrones en movimiento dentro de un material exótico pueden sincronizarse, sin necesidad de campo magnético alguno ni velocidades extremas. El material en el que se produjo el “milagro” fue un bloque de antimonio y bismuto.

El experimento partió de la sospecha de que el comportamiento de los electrones del bismuto ligado al antimonio exhibirían un efecto cuántico que simularía la presencia de un campo magnético, porque estos electrones se mueven a muy grandes velocidades. Esto permitiría que el comportamiento cuántico predicho tuviera lugar.

Según declaró Hasan en el comunicado de la NSF , “el resultado es muy sorprendente porque estamos viendo electrones con un comportamiento muy similar al que tienen los electrones ante un campo magnético potente, sin que dicho campo se encuentre en el experimento”. En la revista Science ha aparecido publicado el artículo en el que se detalla el experimento.

Técnica basada en un acelerador

A grandes rasgos, para conseguir el movimiento sincronizado de los electrones, los investigadores utilizaron una técnica basada en un acelerador llamada «spin-resolved angle-resolved photoemission”, que permitió además medir simultáneamente la energía, la longitud de onda y el espín de los electrones en la superficie del material del experimento.

Según los científicos, el movimiento obtenido y registrado podría transformar la electrónica, el almacenamiento de datos y la computación.

La razón es que, además de la carga eléctrica, los electrones poseen propiedades magnéticas inherentes, y una capacidad interna de rotación que los hace comportarse como minúsculos imanes que contuvieran en sí el polo negativo y el positivo (esta propiedad fue bautizada por el físico británico Paul Dirac como “el espín cuántico”).

Hoy día, los ordenadores aplican una lógica simple de on-off, basada en el movimiento y almacenamiento de electrones en un semiconductor de silicio. Nuevos diseños podrían dirigir y aprovechar las capacidades adicionales que ofrecen el movimiento y el espín cuántico de los electrones, en materiales experimentales que reduzcan el consumo de energía y mejoren el rendimiento de los ordenadores.

Antecedentes

Tal y como publicamos anteriormente en Tendencias21 el efecto Hall cuántico también fue estudiado por un equipo de físicos del Weizmann Institute de Israel, en este caso para generar cuasipartículas (partículas con una carga eléctrica equivalente a una cuarta parte de la carga fundamental del electrón) a partir de arseniuro de galio.

Estas cuasipartículas con un cuarto de la carga del electrón actúan de manera muy distinta del resto de las partículas con carga no fraccionada, y por eso han sido buscadas como fundamento para la fabricación de un hipotético ordenador cuántico topológico de gran potencia, pero al mismo tiempo, altamente estable.

El ordenador cuántico es el sueño de todas las agencias de seguridad y de todos los hackers del mundo. Los bits de los ordenadores actuales oscilan constantemente entre el 0 y el 1 mientras llevan a cabo su trabajo. Pero, en los sistemas cuánticos partículas como el electrón o el fotón pueden presentar el 0 y el 1 a la vez, en un estado cuántico de superposición, permitiendo a los ordenadores hacer cálculos mucho más complejos, seguros y veloces que los que realizan actualmente.

Yaiza Martinez

Hacer un comentario

RSS Lo último de Tendencias21

  • Ya es posible transmitir el tacto a través de Internet 26 junio, 2024
    Un nuevo estándar para la compresión y transmisión del sentido del tacto mediante Internet sienta las bases para la telecirugía, la teleconducción y nuevas experiencias de juego en línea, entre otras aplicaciones. El flamante estándar HCTI (Haptic Codecs for the Tactile Internet) es para el “tacto digital” lo que son JPEG, MP3 y MPEG para […]
    Pablo Javier Piacente
  • Las primeras muestras de la cara oculta de la Luna ya están en la Tierra 26 junio, 2024
    La cápsula de reingreso de la sonda Chang'e-6 de China, que transporta hasta dos kilogramos de materiales extraídos y perforados de la cuenca más antigua de la Luna ubicada en su lado oscuro, aterrizó este martes 25 de junio en la región de Mongolia Interior y fue rápidamente recuperada, según informó la Administración Nacional del […]
    Pablo Javier Piacente
  • La Tierra tendrá dos soles dentro de 1,3 millones de años y durante 60.000 años 26 junio, 2024
    Dentro de 1,3 millones de años, la Tierra tendrá una especie de segundo sol porque la estrella Gliese 710 se acercará a 1,1 años luz de la Tierra y la veríamos del mismo tamaño que Júpiter. Lo malo es que esa alteración cósmica puede provocar un episodio en nuestro planeta como el que acabó con […]
    Eduardo Martínez de la Fe
  • China descubre grafeno natural en la Luna 25 junio, 2024
    Investigadores chinos han descubierto recientemente grafeno natural de escasas capas por primera vez en la Luna, a partir de las muestras traídas a la Tierra por la sonda Chang'e 5. El hallazgo proporciona nuevos conocimientos sobre las actividades geológicas, la historia evolutiva y las características ambientales de la Luna.
    Pablo Javier Piacente
  • Los incendios forestales extremos se duplicaron en los últimos 20 años en todo el planeta 25 junio, 2024
    Una nueva investigación concluye que la frecuencia e intensidad de los incendios forestales extremos se ha más que duplicado en todo el mundo en las últimas dos décadas, debido al calentamiento global antropogénico y otros factores relacionados. Se trata de la primera ocasión en la cual los científicos pudieron trazar una tendencia global para los […]
    Pablo Javier Piacente
  • Detectado en el Mediterráneo el neutrino más energético del universo 25 junio, 2024
    El neutrino más potente jamás observado ha dejado su huella en las profundidades del Mediterráneo, aunque todavía se desconoce de qué rincón del universo procede. Los neutrinos cosmogénicos son los mensajeros de algunos de los eventos más cataclísmicos del cosmos.
    Eduardo Martínez de la Fe
  • La IA identifica seis formas diferentes de depresión 24 junio, 2024
    Los científicos han identificado seis formas biológicamente distintas de depresión gracias a la aplicación de la Inteligencia Artificial (IA) en estudios cerebrales. El hallazgo podría explicar por qué algunas personas no responden a los tratamientos tradicionales para la afección, como los antidepresivos y la terapia psicológica.
    Pablo Javier Piacente
  • La NASA pondrá en órbita una estrella artificial que revolucionará el estudio del Universo 24 junio, 2024
    La NASA encarará un ambicioso proyecto para colocar en órbita una estrella artificial: permitirá la calibración de telescopios a niveles previamente inalcanzables. El proyecto tiene como objetivo mejorar significativamente las mediciones de la luminosidad estelar y abordar varios otros desafíos que dificultan la astrofísica moderna.
    Pablo Javier Piacente
  • Los macacos nos enseñan cómo sobrevivir a un desastre natural 24 junio, 2024
    Los macacos de la isla caribeña de Puerto Rico se volvieron más tolerantes y menos agresivos después del huracán María, que los obligó a compartir la sombra de los árboles para sobrevivir al intenso calor.
    Redacción T21
  • Extrañas formas de vida se ocultan en antiguas cuevas de lava de Hawai 23 junio, 2024
    Científicos estadounidenses han logrado identificar una gran diversidad de especies microbianas únicas, que se han desarrollado en cuevas geotérmicas, tubos de lava y fumarolas volcánicas de la isla de Hawái. Estas estructuras subterráneas se formaron hace entre 65 y 800 años y reciben poca o ninguna luz solar, en ambientes similares a los que pueden encontrarse […]
    Pablo Javier Piacente