Tendencias21
El cerebro piensa en paralelo, como los superordenadores

El cerebro piensa en paralelo, como los superordenadores

El cerebro piensa en paralelo, como los superordenadores, y dispone de una infraestructura en la nube para procesar la información. Cada neurona actúa como los nodos de las redes de aprendizaje profundo de la IA.

El cerebro piensa en paralelo, como los superordenadores

La computación paralela es una técnica de programación que permite ejecutar simultáneamente muchas instrucciones. Parte de la base de que los problemas grandes hay que dividirlos primero en problemas pequeños para luego resolverlos a la vez (en paralelo).

Esta técnica de programación utiliza múltiples recursos computacionales y se usa particularmente en los superordenadores, conjuntos de poderosos procesadores unidos entre sí para aumentar su potencia de trabajo y rendimiento.

Investigadores del Blue Brain Project han descubierto ahora que el cerebro actúa como una unidad de computación paralela cuando pensamos. Han comprobado que las terminales de las neuronas llamadas dendritas trabajan juntas de forma dinámica según la carga de trabajo a realizar.

Las dendritas son prolongaciones de las neuronas, en forma de filamentos, que reciben los impulsos de otras neuronas y los reenvían a otras neuronas para posibilitar el procesamiento de la información.

Igual que un superordenador

Los investigadores han podido observar que una neurona puede gestionar diferentes aspectos de una señal entrante múltiple (paralela), de la misma forma que lo hace un superordenador.

También que cada unidad de computación paralela del cerebro (neurona) puede aprender por sí misma a ajustar la señal que debe replicar a otra neurona, en función de la naturaleza de la señal entrante.

Además, cada neurona actúa de la misma forma que lo hacen los nodos de las redes de aprendizaje profundo explotadas en los modelos actuales de inteligencia artificial, señalan los investigadores.

El sistema de pensamiento dispone también de una especie de infraestructura de computación en la nube, que permite a una neurona compartir dinámicamente con otras neuronas (otras unidades de cómputo independientes) tanta actividad como la que demanda la carga de trabajo de la señal entrante.

Por último, esta investigación muestra cómo estas unidades de procesamiento paralelo influyen en el aprendizaje: la forma en que una neurona aprende, depende de la cantidad y la ubicación de los procesadores paralelos, que a su vez dependen de las señales enviadas por otras neuronas.

Por ejemplo, algunas sinapsis no aprenden independientemente cuando el nivel de la señal de entrada es bajo, pero comienzan a hacerlo cuando la señal es más alta, han podido determinar los investigadores.

La fuerza de una sinapsis determina así la intensidad con la que una neurona percibe la señal eléctrica de un vecino. Esta fuerza es modificada por el proceso de aprendizaje. Una «matriz de conectividad» determina cómo estas sinapsis se comunican entre sí.

El cerebro piensa en paralelo, como los superordenadores

Modelo virtual

En un artículo publicado en Cell Reports, los investigadores explican que realizaron su análisis en las células de la corteza cerebral de un roedor virtual, diseñado por el equipo del Blue Brain Project.

Los investigadores explican que otros tipos de neuronas reales, no corticales o humanas, deberían funcionar de la misma manera que las neuronas del modelo virtual.

Los investigadores comparan sus resultados con el funcionamiento de algunas tecnologías informáticas actuales y concluyen que  las dendritas actúan como unidades de computación paralelas.

«En el Proyecto Blue Brain, este enfoque matemático nos permite determinar a qué nivel de complejidad necesitamos modelar las redes corticales en nuestra reconstrucción digital y simulación cerebral «, dice Marc-Oliver Gewaltig, jefe de la división de neurociencia de la simulación del pryecto Blue Brain, en un comunicado.

Potencial postsináptico

Hasta ahora, los algoritmos de aprendizaje convencionales (como los utilizados en aplicaciones de inteligencia artificial) presuponen que las neuronas son unidades estáticas que simplemente integran y escalan las señales entrantes.

Sin embargo, esta investigación demuestra que los procesos de pensamiento son más complejos: el número y el tamaño de las subunidades independientes pueden ser controlados por una señal entrante de intensidad variable o por una forma particular de potencial postsináptico inhibidor llamado «inhibición de derivación» (sinapsis que actúa como una derivación eléctrica).

Los investigadores creen que este control temporal de la compartimentación es un potente mecanismo cerebral para aprender las características de una señal entrante a través de la agrupación de dendritas.

“Nuestros resultados muestran que el número de procesadores paralelos varía con el nivel de estas señales de fondo, lo que sugiere que la misma neurona podría tener varias funciones computacionales en diferentes estados cerebrales», señala el autor principal, Willem Wybo.

¿Invento humano?

«Esta observación es emocionante. Con estos nuevos conceptos, podemos comenzar a buscar algoritmos que exploten los rápidos cambios en el emparejamiento de unidades de procesamiento. Esto abrirá nuevas perspectivas sobre esta pregunta fundamental: cómo el cerebro realiza los cálculos», concluye Marc-Oliver Gewaltig.

Hasta ahora se ha creído que el único denominador común entre un cerebro y un ordenador consiste en el almacenamiento y procesamiento de la información para ejecutar tareas cognitivas.

Esta investigación revela un paralelismo adicional que tiene que ver con la manera de procesar la información, un resultado que ayudará a comprender mejor cómo piensa el cerebro.

También pone de manifiesto que el invento humano de la computación paralela ya existía en el cerebro antes de que lo replicáramos en una máquina en los años 50 del siglo pasado.

Referencia

Electrical Compartmentalization in Neurons. Willem A.M. Wybo et al. Cell Reports, volume 26, issue 7, p1759-1773.e7, February 12, 2019. DOI:https://doi.org/10.1016/j.celrep.2019.01.074

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Una bacteria se transforma en un largo hilo para infectar células más rápidamente y crecer sin límites 7 febrero, 2022
    Una bacteria puede mutar su forma hasta convertirse en un interminable hilo y multiplicar por 100 veces su tamaño: de esta manera, logra infectar más células en menos tiempo. Es una virulenta variante de infección bacteriana que no se había identificado hasta el momento.
    Pablo Javier Piacente
  • Detectan el primer agujero negro fuera de control en la Vía Láctea 7 febrero, 2022
    Por primera vez, un equipo internacional de científicos ha logrado detectar un agujero negro errante, solitario e inactivo en nuestra galaxia, a poco menos de 5.200 años luz de distancia de la Tierra. El misterioso objeto se mueve a través de la Vía Láctea a una velocidad de 45 kilómetros por segundo: los astrónomos confirmaron […]
    Pablo Javier Piacente
  • Los abismos oceánicos están profusamente poblados de vida prístina 7 febrero, 2022
    Los abismos oceánicos triplican la diversidad microbiana de los niveles superiores de los mares terrestres, pero la mayor parte de esa vida es desconocida por la ciencia: lo revela el análisis de casi 1.700 muestras y dos mil millones de secuencias de ADN recogidas en todo el mundo.
    Eduardo Martínez de la Fe
  • El universo temprano estaba siete veces más caliente que el actual 7 febrero, 2022
    El universo temprano tenía una temperatura siete veces mayor que la actual, han comprobado los astrofísicos: utilizaron una nube de vapor de agua proyectada por una lejana galaxia para observar el estado del Universo en sus primeras etapas. Nueva puerta para el estudio de la energía oscura.
    Redacción T21
  • El cerebro es como una máquina del tiempo 6 febrero, 2022
    El cerebro actualiza cada 15 segundos la información que procede de los ojos para que podamos gestionar la vida cotidiana sin que caigamos en alucinaciones. Es como una máquina del tiempo que nos proporciona estabilidad visual.
    Redacción T21
  • Las ardillas tienen el secreto de los viajes al espacio profundo 5 febrero, 2022
    La pérdida de masa muscular que sufren los astronautas en el entorno de gravedad cero del espacio se puede subsanar replicando el mecanismo natural que usan las ardillas para hibernar y despertarse meses después en perfecto estado físico.
    Redacción T21
  • Las primeras células se agruparon de forma autónoma, tanto en la Tierra como en Marte 4 febrero, 2022
    La formación autónoma de poblaciones de protocélulas o células primitivas, utilizando la energía presente en superficies naturales, podría haber sido el punto de partida de una ruta que habría culminado en la transformación de entidades no vivas en organismos vivos, según un nuevo estudio. 
    Pablo Javier Piacente
  • El agua de la Tierra existía antes que surgiera nuestro planeta 4 febrero, 2022
    La composición química del agua que hoy disfrutamos en la Tierra y que es primordial para la vida existía desde mucho antes de la formación de nuestro planeta: se conformó gracias a depósitos de gas que incluían vapor de agua, en los primeros 200.000 años del Sistema Solar.
    Pablo Javier Piacente
  • ¿Existe un mundo paralelo oculto? Un experimento con neutrones parece sugerirlo 4 febrero, 2022
    Un experimento desarrollado con neutrones en el reactor nuclear de Grenoble ha descubierto nuevos indicios de que las partículas que desaparecen inexplicablemente podrían haber emigrado a un universo paralelo. Y pueden volver al nuestro.
    Eduardo Martínez de la Fe
  • Las lunas podrían ser la clave para que los planetas alberguen vida 3 febrero, 2022
    Las lunas podrían ser un elemento crucial para que un planeta tenga la capacidad de albergar vida: según un nuevo estudio, los satélites naturales deben ser grandes en proporción al tamaño del planeta anfitrión, para que las posibilidades de hallar vida se incrementen.
    Pablo Javier Piacente