Tendencias21

La mitad de los neutrinos producidos dentro de la Tierra proceden del manto

El experimento Borexino, que estudia los geoneutrinos, los neutrinos producidos en el interior de la Tierra, ha detectado 24 de ellos, de los cuales la mitad proceden del manto y no de la corteza. Además, el experimento IceCube ha observado 21 muones de ultra alta-energía, productos secundarios de la interacción de los neutrinos cósmicos con la materia, que además proceden de fuera de nuestra galaxia. Por Carlos Gómez Abajo.

La mitad de los neutrinos producidos dentro de la Tierra proceden del manto

Aproximadamente la mitad de los neutrinos detectados a partir de fuentes naturales subterráneas provienen del manto terrestre, y no de la corteza, de acuerdo con un análisis de nuevos datos de detección de neutrinos.

La descomposición continua de los longevos isótopos radiactivos dentro de la Tierra calienta el planeta y también envía flujos de neutrinos, que se pueden observar en grandes detectores. La Colaboración Borexino ha dado a conocer un nuevo conjunto de datos sobre tales «geoneutrinos» e indica que al menos algunos de ellos se originan en el manto de la Tierra.

El trabajo, explica la Sociedad Americana de Física en su web, podría mejorar la comprensión de los investigadores sobre cómo las desintegraciones radiactivas ayudan a impulsar procesos geofísicos internos, incluida la lenta convección de rocas en el manto de la Tierra.

Los neutrinos destacan por la interacción por no interactuar prácticamente con la materia -un muro de un año luz de espesor sólo detendrá la mitad de los neutrinos que lo atraviesen-, por lo que su detección es un reto. Pero usando de grandes detectores, como Borexino y KamLAND, otra colaboración internacional, habían detectado ya geoneutrinos con una confianza muy alta.

Con más datos, los investigadores esperan obtener más información sobre la distribución de los isótopos radiactivos en el interior de la Tierra y sobre la cantidad de calor que emiten a diversas regiones subterráneas.

Borexino

El detector Borexino, que contiene 300 toneladas métricas de un fluido que puede emitir destellos de luz en respuesta a las partículas, opera en el subterráneo Laboratorio Nacional Gran Sasso en Italia y detecta antineutrinos de electrones, habitualmente creados en desintegraciones nucleares.

Desde diciembre de 2007 hasta marzo de 2015, el detector registró un total de 77 eventos candidatos a geoneutrinos, en comparación con 46 eventos reportados en 2013.

De todos los isótopos radiactivos de larga duración conocidos, sólo el uranio-238 y el torio-232 son lo suficientemente abundantes y producen antineutrinos de energía suficiente para contribuir de manera significativa a los eventos detectables.

Sin embargo, los reactores nucleares también generan antineutrinos. Utilizando datos de la Agencia Internacional de la Energía Atómica, el equipo Borexino calcula que alrededor de 53 de los 77 antineutrinos detectados venían probablemente de reactores, lo que deja unos 24 geoneutrinos verdaderos. La certeza de esta detección es la más alta jamás alcanzada con geoneutrinos; la posibilidad de que todas estas partículas provengan de reactores es menos de una por cada cien millones.

La colaboración Borexino estimó el número de geoneutrinos originados en el manto de la Tierra, en lugar de en la corteza. Su estimación anterior tenía una gran incertidumbre y no muy alta confianza en que alguno de los geoneutrinos detectados procediera del manto.

Con el conjunto de datos más grande, el equipo redujo las barras de error lo suficiente para decir que sólo hay una probabilidad del 2% de que todos los neutrinos vengan de la corteza. Para encontrar la fracción procedente del manto, como antes, estimaron el número de neutrinos de la corteza esperados sobre la base de la abundancia medida de uranio y torio y luego restaron este número del total. Encontraron que aproximadamente la mitad de los geoneutrinos se originaron más probablemente en el manto.

Calor

Los investigadores también calcularon la cantidad total de calor generado por desintegraciones radiactivas. Los geocientíficos saben que la Tierra genera unos 47 teravatios de energía desde su interior, parte procedente del calor primordial sobrante de la formación de la Tierra y el resto de desintegraciones radiactivas.

La fracción de calor atribuible a cada una de estas fuentes permanece desconocida en gran medida. El nuevo análisis de Borexino da una estimación para el componente radiogénico del calentamiento de aproximadamente 33 teravatios (con grandes barras de error) -mayor que los estudios anteriores.

El líder del equipo Borexino, Aldo Ianni, del Laboratorio Gran Sasso, sugiere que los futuros estudios llevados a cabo durante períodos de tiempo más largos reducirán la incertidumbre y permitirán una espectroscopia de geoneutrinos precisa, que distinga el origen de los mismos.

Tales datos proporcionarán información sobre la distribución de los isótopos en todo el interior de la Tierra. El estudio actual apenas podía distinguir entre antineutrinos procedentes de desintegraciones de uranio-238 y de torio-232, basándose en las energías de las partículas. Sin embargo, las incertidumbres siguen siendo demasiado grandes como para hacer afirmaciones definitivas.

Neutrinos cósmicos

Por otro lado, investigadores del Observatorio de Neutrinos IceCube han ordenado miles de millones de partículas subatómicas para reunir nueva y potente evidencia en apoyo de sus observaciones de 2013, que confirman la existencia de los neutrinos cósmicos.

En el nuevo estudio, la detección de 21 muones de ultra-alta energía -partículas secundarias creadas en las raras ocasiones que los neutrinos interactúan con otras partículas- proporciona una confirmación independiente de los neutrinos astrofísicos de nuestra galaxia, así como de los neutrinos cósmicos de fuentes ajenas a la Vía Láctea .

Debido a que casi no tienen masa ni carga eléctrica, los neutrinos pueden ser muy difíciles de detectar y sólo se observan indirectamente cuando colisionan con otras partículas para crear muones. Lo que es más, hay diferentes tipos de neutrinos producidos en diferentes procesos astrofísicos.

La Colaboración IceCube es un gran consorcio internacional con sede en la Universidad de Wisconsin-Madison (EE.UU.).

Estos neutrinos de alta energía, creen los científicos, se crean en el interior de algunos de los fenómenos más violentos del universo, como los agujeros negros. Las partículas creadas en estos eventos, incluyendo los neutrinos y los rayos cósmicos, son aceleradas a niveles de energía que superan a los aceleradores terrestres récord como el Gran Colisionador de Hadrones (LHC) por un factor de más de un millón.

Son muy apreciados por los astrofísicos porque la información que poseen es prístina, ya que viajan sin cambios millones de años luz entre sus fuentes y la Tierra.

Filtro

Las últimas observaciones, informa la Universidad de Wisconsin-Madison en una nota de prensa, han sido realizadas por el Observatorio Ice Cube -compuesto de miles de sensores ópticos hundidos en las profundidades del hielo de la Antártida en el Polo Sur- a través de la Tierra, observando el cielo del Hemisferio Norte. La Tierra actúa como un filtro para ayudar a eliminar el fondo confuso de muones que se crean cuando los rayos cósmicos chocan contra la atmósfera de la Tierra.

Entre mayo de 2010 y mayo de 2012, IceCube registró más de 35.000 neutrinos. Sin embargo, sólo unos 20 de esos eventos de neutrinos poseían los niveles de energía indicativos de que procedían de fuentes astrofísicas o cósmicas. Ahora hay que identificar esas fuentes.

El experimento no ha descubierto un número importante de neutrinos procedentes de una sola fuente. Sin embargo, el hecho de que los observados en el Hemisferio Norte tengan energía similar a los detectados observando el Hemisferio Sur, señala que proceden de fuera de la Vía Láctea. Si procedieran de ésta, se observaría un número mayor de neutrinos en el plano de la galaxia, cosa que no ocurre; se observan neutrinos en todas las direcciones por igual.

Referencias bibliográficas:

M. Agostini et al. (Borexino Collaboration): Spectroscopy of geoneutrinos from 2056 days of Borexino data. Phys. Rev. D (2015). http://dx.doi.org/10.1103/PhysRevD.92.031101

M. G. Aartsen et al. (IceCube Collaboration): Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube. Physical Review Letters (2015). DOI:10.1103/PhysRevLett.115.081102

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • La contaminación del aire aumenta la frecuencia de rayos y relámpagos 10 septiembre, 2024
    Un grupo de científicos analizó datos de más de 500.000 tormentas eléctricas en el transcurso de 12 años: descubrieron que tener partículas más finas en el aire, como aerosoles y otros contaminantes ligados a la actividad humana, está directamente relacionado con un mayor número de rayos y relámpagos. Además, incrementa en general la intensidad de […]
    Pablo Javier Piacente
  • La electricidad podría producir oro 10 septiembre, 2024
    Un nuevo estudio sugiere que la formación de pepitas de oro podría ser impulsada por un fenómeno eléctrico único: la piezoelectricidad es un proceso que resulta de la polarización eléctrica que ocurre dentro de sustancias, incluidos cristales como el cuarzo, cuando se colocan bajo tensión mecánica. Esto explicaría la formación de enormes pepitas de oro […]
    Pablo Javier Piacente
  • La IA es capaz de crear falsos recuerdos que se prolongan en el tiempo 10 septiembre, 2024
    La Inteligencia Artificial puede amplificar los falsos recuerdos, según estudio del MIT. Altera la memoria de los testigos de manera más pronunciada que los métodos tradicionales, lo que plantea preguntas fundamentales sobre la naturaleza de la memoria, la identidad y la realidad misma.
    Redacción T21
  • Los microbios más antiguos forjaron nuestro sistema inmunológico 9 septiembre, 2024
    Los microbios que surgieron hace miles de millones de años pueden haber hecho que nuestro sistema inmunológico evolucionara hasta su capacidad actual: una investigación ha comprobado que dos de nuestras defensas más importantes contra los virus han persistido desde antes del surgimiento de la vida compleja en la Tierra. Se trata de dos proteínas que desempeñan […]
    Pablo Javier Piacente
  • Los mosquitos aprovechan el infrarrojo para elegir a sus víctimas humanas 9 septiembre, 2024
    Los mosquitos usan la detección infrarroja en sus antenas para rastrear a sus presas, según un nuevo estudio. Los investigadores hallaron que los insectos usan un sentido desconocido hasta hoy, basado en la identificación de señales en el rango infrarrojo (IR) del espectro electromagnético, para ubicar el mejor sitio para picar: el sistema natural presenta […]
    Pablo Javier Piacente
  • Una misión científica pionera estudiará los rasgos genéticos únicos de los indígenas latinoamericanos 9 septiembre, 2024
    Este mes comienza una misión científica internacional a la selva amazónica que colocará a Latinoamérica en el foco del mapa genómico mundial. Coliderada por el científico español Manuel Corpas, visitará comunidades indígenas remotas con el objetivo de explorar sus adaptaciones genéticas únicas y comprender cómo se pueden traducir en medicina de precisión.
    Alejandro Sacristán
  • Google usa la IA para controlar los semáforos de 12 grandes ciudades 8 septiembre, 2024
    Google ha puesto en marcha, de forma experimental, un proyecto que optimiza el tráfico y reduce la contaminación en 12 grandes ciudades, regulando el encendido y apagado de los semáforos aplicando la Inteligencia Artificial.
    Redacción T21
  • Descubren una nueva conexión entre el corazón y el cerebro 7 septiembre, 2024
    Los científicos han descubierto una conexión notable entre el corazón y el cerebro humanos, revelando distintas ventanas de tiempo diseñadas para la acción y la percepción. Los investigadores hallaron que existen momentos singulares en el ciclo cardíaco donde el cerebro se prepara para procesar información sensorial y luego actuar en consecuencia.
    Pablo Javier Piacente
  • Rastros de la atmósfera primitiva de la Tierra pueden estar ocultos en la Luna 6 septiembre, 2024
    Un breve campo magnético lunar, que habría existido durante menos de 140 millones de años, podría arrojar luz sobre los inicios de nuestro planeta. Además, un nuevo análisis de cristales individuales, en rocas recolectadas durante las misiones Apolo, también plantea la posibilidad de que el suelo lunar pueda contener rastros de la atmósfera primitiva de […]
    Pablo Javier Piacente
  • Crean una solución que hace transparente la piel de organismos vivos 6 septiembre, 2024
    Los científicos volvieron transparente la piel de ratones vivos aplicando una mezcla de agua y un colorante alimentario amarillo común, llamado tartrazina. El proceso permitió la observación directa de vasos sanguíneos y órganos internos, abriendo interesantes y nuevos caminos de investigación. Los investigadores remarcaron que la solución es biocompatible y que el proceso puede revertirse.
    Pablo Javier Piacente