Tendencias21
Los sonidos esculpen el cerebro hasta la adolescencia

Los sonidos esculpen el cerebro hasta la adolescencia

Nuestro entorno auditivo modifica continuamente la función cerebral hasta bien entrada la adolescencia: los ruidos de las aulas pueden afectar al desarrollo del cerebro infantil. Por Tania Barkat (*).

Lo que aprenden los niños es muy diferente de cómo aprenden los adultos. ¿Quién no ha envidiado la velocidad y la aparente facilidad con la que un niño adquiere un nuevo idioma? La capacidad de nuestro cerebro para crear un mapa auditivo del mundo exterior se desarrolla en gran parte durante la niñez.

Por ejemplo, los niños criados en un entorno de habla inglesa distinguirán fácilmente entre los fonemas la y ra. Por el contrario, a los niños que crecen en Japón les resultará cada vez más difícil distinguir estos dos fonemas, ya que no están presentes en el idioma japonés. Por lo tanto, su cerebro no ha sido esculpido en consecuencia.

La conformación de los circuitos neuronales responsables de la comprensión de tales diferencias perceptivas tiene lugar durante ventanas de tiempo de plasticidad mejorada: se las conoce como períodos críticos para la plasticidad.

Los períodos críticos son características específicas

Estudios anteriores han demostrado que el cerebro está muy moldeado por los sonidos a los que está expuesto justo después de que comienza a tener la capacidad de escuchar, pero solo si estos sonidos son los más simples, es decir, que contienen solo un componente de frecuencia (Barkat et al., 2011).

Lo que no quedó claro es si la exposición a sonidos más complejos podría cambiar igualmente el cerebro y potencialmente incluso en una etapa posterior.

Los sonidos complejos son, por ejemplo, barridos de frecuencia en los que la frecuencia del sonido no es constante, como en los sonidos más simples, sino que aumenta (barridos hacia arriba) o disminuye (barridos hacia abajo) con el tiempo. La capacidad de percibir tales barridos de frecuencia es importante para la comprensión del habla y de la música en general.

Para abordar esta pregunta, mi grupo de investigación en el Brain & Sound Lab de la Universidad de Basilea utilizó un conjunto completo de métodos, que incluyen electrofisiología multicanal, optogenética, inmunohistoquímica y ensayos de comportamiento.

Lo que aprendimos es que la exposición a barridos de frecuencia puede, de hecho, esculpir el cerebro, pero solo si la exposición ocurre mucho más tarde en el desarrollo y hasta bien entrada la adolescencia, lo que corresponde a personas de hasta 16 años.

Esto demuestra que el cerebro es maleable a diferentes características en distintas ventanas de tiempo. O, para decirlo de otra manera, el cerebro tiene numerosos períodos críticos que son específicos y asincrónicos (Bhumika et al., 2020).

Al identificar los mecanismos que controlan tales períodos críticos, podemos controlar la plasticidad cerebral de formas muy específicas, independientemente del programa de desarrollo postnatal de las cortezas sensoriales (Nakamura et al., 2020).

Restableciendo la plasticidad en el cerebro adulto

¿Para qué se podría utilizar este conocimiento? La identificación de los mecanismos que permiten tal plasticidad en un cerebro en desarrollo abre nuevas vías para la investigación traslacional.

Digamos que podría inspirar nuevas estrategias para restablecer la plasticidad en adultos que padecen anomalías auditivas. Por ejemplo, se sabe, a partir de estudios en humanos, que un mal juicio de la dirección del barrido de frecuencia conduce a una disminución del juicio lingüístico y emocional, como lo que se puede observar en el autismo.

Se podría especular con que la activación de los mecanismos responsables de la plasticidad mejorada durante el período crítico de los barridos de frecuencia, podría ayudar a los adultos autistas a aumentar su percepción de las emociones, únicamente mejorando su capacidad auditiva.

Pero también en otros aspectos este conocimiento podría ser relevante. Comprender que nuestro entorno auditivo modifica continuamente la función cerebral hasta bien entrada la adolescencia, podría permitirnos plantear preguntas más generales.

Por ejemplo, podemos preguntarnos si los entornos auditivos muy ruidosos de las aulas escolares, en los que nuestros hijos pasan tantas horas, son apropiados para un desarrollo cerebral adecuado.

Si se toman en serio, este tipo de preocupaciones podrían tener un impacto en las políticas educativas y potencialmente incluso influir en los desarrollos de las infraestructuras.

 

(*) Tania Barkat es catedrática de Neurociencias en la Universidad de Basilea. Este artículo se publicó originalmente en el blog Sci Five de la citada universidad. Se reproduce con autorización.

Foto: Victoria Borodinova, pixabay.

Referencias

A critical period for auditory thalamocortical connectivity. Tania Rinaldi Barkat, Daniel B Polley & Takao K Hensch. Nature Neuroscience volume 14, pages1189–1194(2011). DOI:https://doi.org/10.1038/nn.2882

A Late Critical Period for Frequency Modulated Sweeps in the Mouse Auditory System. Stitipragyan Bhumika et al. Cerebral Cortex, Volume 30, Issue 4, April 2020, Pages 2586–2599. DOI:https://doi.org/10.1093/cercor/bhz262.

Sequential Organization of Critical Periods in the Mouse Auditory System. Mari Nakamura et al. Cell Reports, Volume 32, Issue 8, 25 August 2020, 108070. DOI:https://doi.org/10.1016/j.celrep.2020.108070

Firma invitada

Hacer un comentario

RSS Lo último de Tendencias21

  • Algo invisible podría esconderse bajo la superficie de la Luna 5 julio, 2024
    Las extrañas estructuras arremolinadas de origen magnético que se han descubierto en la Luna y que aún no tienen explicación, podrían crearse a partir de la actividad de algo desconocido que existe en el interior del satélite: un nuevo estudio intenta determinar qué podría ser exactamente lo que está oculto bajo la superficie lunar y […]
    Pablo Javier Piacente
  • Las explosiones solares extremas combinadas con un campo magnético débil podrían ser un gran peligro para la Tierra 5 julio, 2024
    Los científicos advierten que en momentos en que el campo magnético de la Tierra es débil, las tormentas solares muy intensas podrían tener un efecto dramático para la vida en todo el planeta. Aunque no es posible saber cuándo podría concretarse esta combinación mortal, indican que es necesario estar alertas durante el máximo solar o […]
    Pablo Javier Piacente
  • Se crea el primer acceso gratuito a la superficie lunar 5 julio, 2024
    Un software de código abierto llamado Moonindex facilita a los científicos una herramienta gratuita para explorar el posible uso de los recursos minerales de la Luna en futuras misiones espaciales y para identificar sitios de aterrizaje adecuados.
    Redacción T21
  • Crean el primer robot organoide con materia cerebral humana 4 julio, 2024
    Un sistema de interfaz cerebro-ordenador desarrollado en China combina la materia cerebral humana con un chip para crear un robot híbrido: se trata de un organoide creado en base a células madre en un entorno controlado de laboratorio, que interactúa con electrodos para llevar adelante funciones cerebrales básicas.
    Pablo Javier Piacente
  • Una pierna biónica puede ser controlada por el cerebro y hasta permite escalar o bailar 4 julio, 2024
    Los investigadores han desarrollado una nueva pierna protésica que se puede controlar a través de señales cerebrales: permite caminar a velocidades máximas equivalentes a las personas sin amputación, además de realizar excursiones, escalar y hasta bailar. Se trata de la primera prótesis con estas características que puede ser controlada totalmente por el sistema nervioso del […]
    Pablo Javier Piacente
  • Descubren yacimientos de biodiversidad que podrían evitar la sexta gran extinción 4 julio, 2024
    En el mundo hay 16.825 yacimientos de biodiversidad que podrían evitar la sexta gran extinción de la vida en la Tierra. Se encuentran principalmente en los trópicos y subtrópicos y su conservación es asequible y alcanzable.
    Eduardo Martínez de la Fe
  • Las células de nuestro cerebro se resisten a morir 3 julio, 2024
    Un análisis comparativo de tejido cerebral post mortem y muestras tomadas de pacientes vivos ha revelado por primera vez diferencias significativas en la forma en que se modifican las hebras de ARN (ácido ribonucleico) durante la vida y al momento de morir, exponiendo nuevos objetivos potenciales para el diagnóstico y tratamiento de enfermedades.
    Pablo Javier Piacente
  • Las hormigas invasoras hacen autostop para encontrar un nuevo hogar 3 julio, 2024
    Se sabe que los insectos son especialistas en utilizar todo tipo de formas de transporte para atravesar amplias distancias, pero un nuevo estudio ha revelado que las hormigas también dominan el autostop: estos insectos sociales recogen a toda la familia, incluida su reina, y se suben al primer vehículo que encuentran para emprender un viaje […]
    Pablo Javier Piacente
  • Descubren un antiguo mundo perdido en las profundidades de la Antártida 3 julio, 2024
    Un gigantesco sistema fluvial que existió hace millones de años en las profundidades del hielo antártico conformó un verdadero mundo hoy ya extinto: los científicos identificaron restos de un enorme río que existió hace aproximadamente 34 millones de años y dio vida a una zona que actualmente está dominada por grandes masas de hielo.
    Pablo Javier Piacente
  • Jocelyn Bell Burnell, reconocida por el mundo científico 3 julio, 2024
    Jocelyn Bell Burnell, descubridora del primer púlsar, quedó excluida del Premio Nobel de Física en 1974, concedido a los científicos con los que había realizado el hallazgo.  Más de 50 años después, fue galardonada con el Premio Breakthrough Especial en Física Fundamental, por toda una vida de liderazgo científico inspirador. El importe del premio lo […]
    Alicia Domínguez, Eduardo Costas (*).