Tendencias21

Nuevo método de refrigeración para sistemas cuánticos mecánicos

Científicos de la Universidad de Basilea (Suiza) han conseguido enfriar, usando un gas atómico ultrafrío, las vibraciones de una membrana hasta menos de 1 grado por encima del cero absoluto. Esta técnica, más desarrollada, permitiría realizar novedosos estudios de física cuántica, visibles a simple vista, y crear nuevos dispositivos de medidas de precisión.

Nuevo método de refrigeración para sistemas cuánticos mecánicos

Físicos de la Universidad de Basilea (Suiza) han desarrollado un nuevo método de refrigeración para sistemas cuánticos mecánicos. Usando un gas atómico ultrafrío, las vibraciones de una membrana se enfriaron a menos de 1 grado por encima del cero absoluto. Esta técnica permitiría realizar novedosos estudios de física cuántica, visibles a simple vista, y crear nuevos dispositivos de medidas de precisión, informan los investigadores en la revista Nature Nanotechnology.

Los gases atómicos ultrafríos están entre los objetos más fríos que existen. Los rayos láser se pueden utilizar para atrapar átomos dentro de una cámara de vacío y ralentizar su movimiento a paso de tortuga, alcanzando temperaturas de menos de una millonésima de grado sobre el cero absoluto -la temperatura a la que todo el movimiento se detiene.

A temperaturas tan bajas, los átomos obedecen las leyes de la física cuántica: se mueven como pequeños paquetes de ondas y pueden estar en superposición, y en varios lugares a la vez. Estas características se potencian en tecnologías como los relojes atómicos y otros dispositivos de medición de precisión.

¿Pueden estos gases ultrafríos ser utilizados también como refrigerantes, para enfriar otros objetos a temperaturas muy bajas? Esto abriría muchas posibilidades para la investigación de la física cuántica en sistemas nuevos y potencialmente más grandes. El problema es que los átomos son de tamaño microscópico e incluso las nubes más grandes producidas hasta el momento, que se componen de varios millones de átomos ultra-fríos, todavía contienen muchas menos partículas que algo tan pequeño como un grano de arena. Por tanto, la potencia de refrigeración de los átomos es limitada.

Una membrana

Un equipo de investigadores de la Universidad de Basilea, dirigido por el profesor Philipp Treutlein, ha conseguido ahora usar átomos ultra-fríos para enfriar las vibraciones de una membrana de milímetros de tamaño. La membrana, una película de nitruro de silicio de 50 nanometros de espesor, oscila arriba y abajo como un pequeño parche cuadrado.

Tales osciladores mecánicas no están nunca totalmente en reposo, sino que muestran vibraciones térmicas que dependen de su temperatura. Aunque la membrana contiene aproximadamente mil millones de veces más partículas que la nube atómica, se observa un fuerte efecto de enfriamiento, que enfría las vibraciones de la membrana a menos de 1 grado por encima del cero absoluto.

«El truco aquí es concentrar toda la potencia de refrigeración de los átomos en el modo de vibración de la membrana deseado», explica Andreas Jöckel, un miembro del equipo del proyecto, en la nota de prensa de la universidad, recogida por AlphaGalileo. La interacción entre los átomos y la membrana es generada por un rayo láser.

Como explica el físico, «la luz del láser ejerce fuerzas sobre la membrana y los átomos. La vibración de la membrana cambia la fuerza de la luz sobre los átomos y viceversa. «El láser transmite el efecto de enfriamiento a distancias de varios metros, por lo que la nube atómica no tiene que estar en contacto directo con la membrana. El acoplamiento es amplificado por un resonador óptico que consta de dos espejos, entre las que se intercala la membrana».

Primer experimento de este tipo

Los sistemas que utilizan la luz para acoplar átomos ultrafríos y osciladores mecánicos ya se habían propuesto teóricamente. El experimento de la Universidad de Basilea es el primero en todo el mundo que lleva a la práctica un sistema de este tipo y lo utiliza para enfriar el oscilador. Nuevas mejoras técnicas deberían permitir que se enfriaran las vibraciones de la membrana al estado fundamental de la mecánica cuántica.

Para los investigadores, el enfriamiento de la membrana con los átomos es sólo el primer paso: «La naturaleza cuántica bien controlada de los átomos combinada con la interacción inducida por la luz está abriendo nuevas posibilidades para el control cuántico de la membrana», señala Treutlein.

Esto puede permitir experimentos de física cuántica fundamental con un sistema mecánico relativamente macroscópico, visible a simple vista. También sería posible generar lo que se conoce como estados entrelazados, entre átomos y membrana. Ello permitiría la medición de las vibraciones de la membrana con una precisión sin precedentes, que a su vez podrían permitir el desarrollo de nuevos tipos de sensores para pequeñas fuerzas y masas.

Los experimentos en la Universidad de Basilea han sido co-financiado por la Unión Europea.

Referencia bibliográfica:

Andreas Jöckel, Aline Faber, Tobias Kampschulte, Maria Korppi, Matthew T. Rakher, Philipp Treutlein. Sympathetic cooling of a membrane oscillator in a hybrid mechanical–atomic system. Nature Nanotechnology (2014). DOI: 10.1038/nnano.2014.278.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Hasta el pequeño cerebro de una hormiga desarrolla tareas complejas 17 febrero, 2024
    Las hormigas del desierto encuentran su camino durante una fase temprana de aprendizaje con la ayuda del campo magnético de la Tierra. El proceso de aprendizaje asociado deja huellas claras en su pequeño cerebro, capaz de asumir tareas complejas con menos de un millón de neuronas.
    Eduardo Martínez de la Fe
  • Los agujeros negros supermasivos y las primeras galaxias crecieron al mismo tiempo 16 febrero, 2024
    Es probable que ya existieran agujeros negros supermasivos en los primeros momentos de la historia cósmica: habrían acelerado la formación de nuevas estrellas en el Universo temprano, incluso cuando crecían con sus galaxias. Un nuevo análisis de imágenes y datos obtenidos por el telescopio James Webb sugiere que los agujeros negros y las galaxias coexistieron […]
    Pablo Javier Piacente
  • La IA podría estar atrofiando poco a poco nuestros cerebros, según un nuevo estudio 16 febrero, 2024
    De la misma forma que el GPS de los smartphones ha dañado nuestro sentido de la cognición espacial y la memoria, según sugieren algunos estudios, la Inteligencia Artificial (IA) también podría afectar progresivamente nuestra capacidad para tomar decisiones de forma independiente, de acuerdo a una nueva investigación. La hipótesis plantea que los chatbots de IA […]
    Pablo Javier Piacente
  • El Metaverso surgió de la imaginación y se hizo real gracias al progreso tecnológico 16 febrero, 2024
    El Metaverso inició su recorrido en la ciencia ficción y se hizo real inspirado en novelas como “Snow Crash" de Neal Stephenson y apoyado en tecnologías que han posibilitado universos paralelos para la experiencia humana. La novela "Ready Player One" de Ernest Cline y su adaptación cinematográfica dirigida por Steven Spielberg, han desempeñado un papel […]
    Carlos Peña González (*)
  • Revelan el origen de la falla geológica de Seattle, una de las más peligrosas del mundo 15 febrero, 2024
    Los datos magnéticos sugieren que la falla de Seattle, en Estados Unidos, se formó hace 55 millones de años, cuando la mitad sur de una cadena de islas volcánicas en subducción se amontonó sobre el continente y se separó de otra parte de la estructura, "desgarrando" el borde de América del Norte.
    Pablo Javier Piacente
  • Gigantescos "huevos espaciales" podrían ayudarnos a descubrir civilizaciones extraterrestres 15 febrero, 2024
    Un elipsoide SETI es un enfoque geométrico que identifica una región del espacio con forma de huevo, dentro de la cual cualquier civilización inteligente habría logrado observar un evento astronómico significativo, como por ejemplo una supernova, basándose en el tiempo que tarda la luz en viajar a través del espacio. Ahora, un nuevo análisis muestra […]
    Pablo Javier Piacente
  • ¿Qué pasaría si viajáramos a la velocidad de la luz? 15 febrero, 2024
    La física dice que es imposible, pero soñamos con la posibilidad de viajar a la velocidad de la luz. En ese supuesto, el tiempo se dilataría y se alteraría nuestro campo de visión, pero la fuerza de la aceleración nos destruiría. Sin ayuda alguna, no podemos ir a más de 45 kilómetros por hora.
    Redacción T21
  • Nuevo hito en la tecnología cuántica 15 febrero, 2024
    Investigadores alemanes han logrado un avance en la tecnología cuántica al visualizar las posiciones tridimensionales de átomos individuales en un cristal de diamante. Este logro allana el camino para la visualización de moléculas individuales con una precisión atómica, lo que podría revolucionar la investigación y el diseño de materiales y fármacos. Con un poco de […]
    ST/T21
  • Una extraña y antigua megaestructura acecha bajo el mar Báltico 14 febrero, 2024
    En la bahía alemana de Mecklenburg, a 21 metros de profundidad, los científicos han encontrado una antigua megaestructura que data de la Edad de Piedra, concretamente de hace más de 10.000 años. La estructura, que abarca una longitud de casi un kilómetro y está compuesta por piedras de distintos tamaños, desafía toda explicación natural: los […]
    Pablo Javier Piacente
  • Detectan por primera vez materia oscura en un cúmulo galáctico 14 febrero, 2024
    La materia oscura identificada, detectada indirectamente en un cúmulo conformado por miles de galaxias, podría ayudar a los científicos a comprobar la existencia de una estructura a gran escala que se extiende por todo el Universo: de esta forma, un "andamiaje" de materia oscura atravesaría todo el cosmos y sería el sostén de innumerables galaxias, […]
    Pablo Javier Piacente