Tendencias21
Rarezas de un anillo de radiación que rodea a la Tierra

Rarezas de un anillo de radiación que rodea a la Tierra

En 1958, se descubrió que nuestro planeta estaba rodeado por una especie de “anillos” formados por grandes cantidades de protones y electrones que se mueven en espiral, los llamados “cinturones de radiación de Van Allen”. El año pasado, los científicos descubrieron un tercer cinturón de este tipo. Ahora, investigadores de la Universidad de California en Los Ángeles han detallado su origen y sus características únicas.

Rarezas de un anillo de radiación que rodea a la Tierra

En 1958, fueron descubiertos los llamados cinturones de radiación de Van Allen, una especie de “anillos” de superficie toroidal que rodean la Tierra formados por grandes cantidades de protones y electrones que se mueven en espiral, entre los polos magnéticos de nuestro planeta.

El pasado mes de febrero, un equipo de investigadores informó en la revista Science del sorprendente descubrimiento de un tercer anillo de radiación desconocido –hasta entonces se pensaba que sólo había dos-, que demostró la naturaleza dinámica y variable de dichos cinturones y mejoró la comprensión de cómo responden éstos a la actividad solar. Este conocimiento resulta importante para nuestra sociedad moderna, que depende de muchas tecnologías instaladas en el espacio: cuando los cinturones de Van Allen se ven afectados por las tormentas solares y el clima espacial, las comunicaciones y los satélites GPS, así como los seres humanos que están en el espacio, pueden correr riesgos.

Electrones a la velocidad de la luz

Ahora, una nueva investigación realizada por especialistas de la Universidad de California en Los Ángeles (UCLA) y publicada por la revista Nature Physics, arroja nueva luz sobre el último cinturón de radiación de Van Allen detectado.

Según publica la UCLA en un comunicado, los científicos han conseguido modelar y explicar el comportamiento de este tercer anillo. Han demostrado en concreto que las partículas extremadamente energéticas que lo componen, conocidas como electrones ultrarrelativistas, se rigen por una física muy distinta a la de las partículas del cinturón de Van Allen ya observado.

«Antes, los científicos pensaban que todos los electrones de los cinturones de radiación situados alrededor de la Tierra obedecían a la misma física», explica Yuri Shprits‎, geofísico de la UCLA. «Estamos descubriendo ahora que los cinturones de radiación constituyen diferentes poblaciones impulsadas por procesos físicos muy diversos».

Para empezar, los investigadores señalan que los electrones ultrarrelativistas de este tercer anillo serían especialmente peligrosos, ya que pueden atravesar la protección de los satélites mejor protegidos y más valiosos del espacio.

Esto se debe a que «su velocidad está muy cercana a la velocidad de la luz y la energía de su movimiento es varias veces mayor que la energía contenida en su masa cuando están en reposo”, a diferencia de poblaciones con electrones con energías más bajas.

Por otra parte, Shprits y sus colaboradores también han descubierto que pulsaciones electromagnéticas de baja frecuencia que se creía eran dominantes en la aceleración y la pérdida de radiación de los electrones de los cinturones de radiación de Van Allen, no influyen en los electrones ultrarrelativistas.

Como conclusión, destacan que estos cinturones «ya no pueden ser considerados como una masa coherente de electrones. Se comportan de acuerdo con sus energías y reaccionan de maneras diversas a las perturbaciones del espacio”.

«Este estudio demuestra que existen grupos de partículas completamente diferentes en el espacio que cambian a diferentes escalas de tiempo, y que son impulsadas por diversos procesos físicos y muestran muy diferentes estructuras espaciales», concluye Shprits.

La punta del iceberg

Para alcanzar estas conclusiones, los científicos analizaron una serie de simulaciones con un modelo de los cinturones de radiación para el período comprendido entre finales de agosto de 2012 y principios de octubre de ese mismo año.

Las simulaciones, llevadas a cabo aplicando la física de electrones ultrarrelativistas y las condiciones meteorológicas espaciales registradas por estaciones terrestres, encajó extraordinariamente bien con las observaciones de los cinturones de radiación de Van Allen realizadas por las sondas gemelas Van Allen de la NASA, lo que confirma la teoría de Shprits y sus colaboradores sobre el nuevo anillo.

«Hay una coincidencia notable entre nuestro modelo y las observaciones, tanto que abarca una amplia variedad de energías», explica Dmitriy Subbotin, otro de los autores del estudio.

«Creo que, con esta investigación, hemos descubierto la punta del iceberg», afirma Shprits. «Nos queda por comprender cómo se aceleran los electrones, donde se originan y cómo varía la dinámica de los cinturones con diferentes tormentas».

Surgimiento y supervivencia

La región que los cinturones de Van Allen ocupan está situada a entre unos 1.000 y unos 50.000 kilómetros de la superficie de la Tierra, y está llena de electrones tan energéticos que se mueven casi a la velocidad de la luz.

Shprits y su equipo descubrieron que el uno de septiembre de 2012, las ondas de plasma producidas por iones que normalmente no afectan a electrones energéticos «sacaron rápidamente a electrones ultrarrelativistas del cinturón exterior casi hasta el borde interior de éste».

Sólo un estrecho anillo de electrones ultrarrelativistas sobrevivió a esta tormenta. Este remanente fue lo que formó el tercer anillo. El fenómeno fue definido entonces como un “evento de aceleración de electrones de gran alcance”. Tras él, se expandió alrededor de la Tierra una burbuja fría de plasma que protegió a las partículas de ese fino anillo de las ondas de iones, lo que permitió al anillo persistir.

Referencias bibliográficas:

D. N. Baker, S. G. Kanekal, V. C. Hoxie, M. G. Henderson, X. Li, H. E. Spence, S. R. Elkington, R. H. W. Friedel, J. Goldstein, M. K. Hudson, G. D. Reeves, R. M. Thorne, C. A. Kletzing, and S. G. Claudepierre. A Long-Lived Relativistic Electron Storage Ring Embedded in Earth’s Outer Van Allen Belt. Science (2013).
DOI:10.1126/science.1233518.

Yuri Y. Shprits, Dmitriy Subbotin, Alexander Drozdov, Maria E. Usanova, Adam Kellerman, Ksenia Orlova, Daniel N. Baker, Drew L. Turner, Kyung-Chan Kim. Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts. Nature Physics (2013). DOI:10.1038/nphys2760.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Google habría impulsado una IA experimental involucrada en la muerte de un adolescente 21 marzo, 2025
    Plataformas respaldadas por gigantes tecnológicos como Google han introducido chatbots de IA interactivos dirigidos a niños y adolescentes, abriendo fuertes debates sobre su impacto en el desarrollo infantil. En concreto, la aplicación experimental Character.AI ha sido objeto de demandas legales por parte de distintas familias, que alegan que sus hijos fueron expuestos a contenidos perjudiciales […]
    Pablo Javier Piacente / T21
  • Sudáfrica y China logran una conexión cuántica satelital récord de casi 13.000 kilómetros 21 marzo, 2025
    Un equipo internacional de científicos ha establecido una conexión satelital cuántica histórica entre Sudáfrica y China, cubriendo una distancia récord de 12.900 kilómetros. Gracias al fenómeno del entrelazamiento cuántico, esta tecnología garantiza comunicaciones absolutamente seguras frente a cualquier intento de espionaje.
    Redacción T21
  • Los tribunales no reconocen derechos de autor a la Inteligencia Artificial 21 marzo, 2025
    Un tribunal de apelaciones en Estados Unidos ha puesto límites a la creatividad de las máquinas: las obras generadas exclusivamente por inteligencia artificial no pueden ser protegidas por derechos de autor. El fallo reafirma que la ley actual requiere la participación humana para garantizar la protección legal de una obra.
    Redacción T21
  • Microsoft e Inait revolucionan la Inteligencia Artificial con cerebros digitales casi humanos 21 marzo, 2025
    Microsoft ha unido fuerzas con la startup suiza Inait para desarrollar sistemas de IA inspirados en el cerebro humano. Esta colaboración busca crear modelos que no solo aprenden de datos, sino que también razonan como el cerebro humano.
    Redacción T21
  • Musk fija rumbo a Marte: las primeras misiones no tripuladas despegarán en 2026 21 marzo, 2025
    El camino hacia la conquista de Marte ya tiene calendario: SpaceX enviará en 2026 cinco misiones no tripuladas hacia el planeta rojo, destinadas a probar la fiabilidad del sistema Starship en aterrizajes. Si culminan con éxito, las históricas misiones tripuladas podrían despegar en menos de una década.
    Redacción T21
  • Desvelan la primera luz que encendió el Universo y su evolución posterior 21 marzo, 2025
    El Telescopio de Cosmología de Atacama (ACT) ha compilado el mapa más detallado que hemos visto hasta hoy del fondo cósmico de microondas, la tenue luz que impregna el Universo desde solo 380.000 años después del Big Bang y cuyos ecos pueden apreciarse en la actualidad. La imagen obtenida es lo más parecido a la […]
    Redacción T21
  • El telescopio Webb detecta dióxido de carbono en exoplanetas a 130 años luz 21 marzo, 2025
    Un nuevo hallazgo del JWST nos acerca un poco más a la comprensión de los mecanismos de formación de otros sistemas planetarios diferentes al nuestro, además de arrojar luz sobre la composición química de las atmósferas de los exoplanetas, un punto crucial en la búsqueda de alguna forma de vida extraterrestre.
    Pablo Javier Piacente / T21
  • Detectan misteriosas señales de radio provenientes de una estrella muerta y su compañera 21 marzo, 2025
    Los astrónomos han rastreado la fuente de una extraña señal de radio proveniente del espacio profundo, que se repite exactamente cada dos horas. Se trata del ritmo al que chocan los campos magnéticos de un par de estrellas que se mueven en una órbita muy apretada, a unos 1.600 años luz de distancia de la […]
    Pablo Javier Piacente / T21
  • "Microrrayos" en gotitas de agua habrían producido moléculas fundamentales para el surgimiento de la vida 21 marzo, 2025
    La síntesis de moléculas necesarias para la aparición de la vida podría haberse originado por "microrrayos" en gotitas de agua. Según un nuevo estudio, la formación de compuestos orgánicos con enlaces carbono-nitrógeno a partir de moléculas de gas podría haber sido un posible mecanismo para crear los componentes básicos de la vida en la Tierra […]
    Pablo Javier Piacente / T21
  • Descubren una "nueva" variedad de coronavirus en murciélagos sudamericanos 21 marzo, 2025
    Identificado en el estado de Ceará, en Brasil, un nuevo coronavirus comparte similitudes con el virus responsable del síndrome respiratorio de Medio Oriente: durante 2025, una serie de experimentos determinarán su potencial para infectar a los humanos.
    Redacción T21