Tendencias21
Se pueden copiar datos cuánticos en un túnel del tiempo, sugiere un modelo teórico

Se pueden copiar datos cuánticos en un túnel del tiempo, sugiere un modelo teórico

Un equipo internacional de científicos ha creado un modelo que supone la superación –teórica- de una de las paradojas de los viajes en el tiempo, el tema de la no-clonación de la información cuántica, pues señala que se podrían copiar datos cuánticos del pasado. De ser cierto este resultado implicaría que la criptografía cuántica no será tan segura como se prevé. Por Yaiza Martínez.

Se pueden copiar datos cuánticos en un túnel del tiempo, sugiere un modelo teórico

Los viajes en el tiempo son uno de los más apasionantes sueños de la humanidad, aunque, evidentemente, constituyen un sueño inalcanzable por ahora. A pesar de ello, los científicos defienden su posibilidad, y se esfuerzan por producir modelos teóricos que la justifiquen.

El último de estos modelos ha sido presentado por un equipo internacional de científicos y supone la superación –teórica- de una de las paradojas de los viajes en el tiempo, el tema de la no-clonación de la información cuántica, pues señala que se podrían copiar datos cuánticos del pasado.

Los investigadores al cargo del presente estudio son Mark Wilde, de la Universidad Estatal de Louisiana (EEUU); Todd A. Brun, de la Universidad de California en los Ángeles; y Andreas Winter, del Grupo de Investigación Cuántica (GIQ) de la Universidad Autónoma de Barcelona.

La paradoja del abuelo

Meterse en una máquina del tiempo para aparecer en otro momento –pasado o futuro- de la historia no es tarea sencilla, a pesar de la cantidad de películas (como Regreso al futuro) que así lo han planteado.

Uno de los más serios problemas presentados por los viajes en el tiempo es la “paradoja del abuelo”, que
señala que si un viajero del tiempo fuera hacia el pasado y allí matase a su abuelo, con esta acción acabaría con la posibilidad de su propia existencia y, en consecuencia, con su viaje temporal.

En 2010, un científico del Instituto Tecnológico de Massachussets (MIT) llamado Seth Lloyd, dijo que este escollo podría superarse con un modelo de viaje en el tiempo “post-seleccionado”, que incluiría la posibilidad que presenta la física cuántica –gracias a su valor probabilístico- de desarrollar cálculos que ignoren ciertos resultados.

Esta postselección permitiría que sólo formasen parte de una ecuación específica aquellas variables que propician un resultado predeterminado. Es decir, que el viajero temporal no podría moverse a sus anchas por el pasado, sino que la máquina que lo trasladase estaría predeterminada para realizar ciertas acciones. De esta forma, se aseguraría la imposibilidad de que el viajero encontrase a su propio abuelo y lo asesinase, por ejemplo.

Otro físico de la Universidad de Oxford, además de pionero de la computación cuántica, llamado David Deutsch, también ideó una solución a esta complejidad de los viajes en el tiempo al proponer que el viajero temporal podría tener la mitad de probabilidades de matar a su abuelo y, por tanto, también la mitad de probabilidades de que éste se mantuviese con vida. En consecuencia, el viajero tendría la mitad de probabilidades de haber nacido –y de volver al pasado a matar a su abuelo-; y así terminaría la paradoja.

Copias inexactas

Más allá del galimatías del abuelo vivo o muerto, existen otras complicaciones para la concreción del viaje en el tiempo. En concreto, el del teorema de la no-clonación cuántica, introducido en 1982 por Wooters, Zurek y Dieks, que dice lo siguiente: no se pueden realizar copias de un estado cuántico desconocido de un sistema.

Dado que, por el famoso principio de incertidumbre de Heisenberg, sabemos también que no se pueden determinar simultáneamente ciertos pares de variables físicas, como la posición y el momento lineal de una partícula subatómica, resultaría imposible “clonar” estados cuánticos –esto es, trasladarlos a otros tiempos-.

En otras palabras, si sumamos el teorema de la no-clonación al de Heisenberg, jamás podríamos contar con una máquina Xerox subatómica que llevase las partículas con la posición y momento angular de un instante dado a otro instante.

“Siempre podremos coger un papel y copiar palabras en él. Es lo que llamamos la copia de datos clásicos”, explica Wilde en un comunicado de la Universidad de Louisiana.

“Pero no se pueden copiar de forma arbitraria los datos cuánticos, a menos que tomen la forma especial de los datos clásicos” (que implican una definición total). “Este teorema de la no-clonación es una parte fundamental de la mecánica cuántica que nos ayuda a razonar sobre cómo procesar datos cuánticos. Si no se pueden copiar los datos, entonces tenemos que pensar en todo de una manera muy diferente”, continúa el investigador.

Siguiente paso: repensar

Sin embargo, en 1991, David Deutsch sugirió que debería ser posible violar el teorema de la no-clonación cuántica. ¿Qué pasaría si una curva temporal cerrada (CTC) permitiera copiar datos cuánticos en muchos puntos distintos?, se preguntó.

Una CTC sería algo parecido a un circuito cerrado que se conecta de nuevo consigo mismo yendo hacia atrás en el tiempo. Por ejemplo, una CTC puede basarse en un agujero de gusano que conecta un lugar y un tiempo en el futuro con otro punto en un tiempo anterior.

Wilde y sus colaboradores desarrollaron teóricamente esta posibilidad en un artículo aparecido en Physical Reviews Letters: la idea de Deutsch que permitiría a una partícula –o a un viajero en el tiempo- que se hallase en una CTC hacer múltiples bucles hacia atrás en el tiempo.

En dicho modelo, una partícula que entrase en el bucle de la CTC seguiría siendo la misma cada vez que pasase por un punto determinado del tiempo. En otras palabras, mantendría consistencia a medida que retrocede temporalmente.

“En cierto sentido, esto permitiría copiar la información de la partícula en muchos puntos diferentes”, afirma Wilde, “porque la partícula está siendo enviada al pasado muchas veces. Es como tener múltiples versiones de la partícula disponibles”.

El problema surge cuando esa partícula (y sus copias) cambian el pasado, como señalaba el modelo de Deutsch. El modelo de Wilde y sus colaboradores, sin embargo, consigue también acabar con este problema, pues llega a una solución que implica copiar datos cuánticos de esa partícula sin alterar el pasado.

Al parecer, éste ha sido el mayor avance del modelo: haber averiguado qué condiciones iniciales tendría el bucle temporal para permitir extraer con eficacia muchas copias de datos cuánticos, sin alterar el pasado. “Simplemente funcionó”, asegura el investigador.

Peligro para la computación cuántica

Aunque aún existe controversia sobre estos resultados, que podrían violar tanto el modelo de Deutsch como la unitariedad cuántica (una restricción sobre la evolución permitida de sistemas cuánticos que asegura que la suma de las probabilidades de todos los posibles resultados de cualquier evento siempre es la misma: 1), Wilde señala que podrían ser importantes para una rama científica en desarrollo: la criptografía cuántica‎.

Si el teorema de no-clonación realmente pudiera ser violado, como el nuevo enfoque de Wilde sugiere, la posibilidad de copiar datos cuánticos del pasado resultaría significativa en este campo, porque podría permitir romper o “hackear” los protocolos de seguridad cuánticos.

“Si alguien con malas intenciones tuviera acceso a estos bucles de tiempo, podría romper la seguridad de la distribución de claves cuánticas”, afirma Wilde. Eso a pesar de que se considera que la comunicación cuántica es la manera más segura de comunicación.

Referencia bibliográfica:

Todd A. Brun, Mark M. Wilde, Andreas Winter. Quantum State Cloning Using Deutschian Closed Timelike Curves. Physical Review Letters (2013). DOI:10.1103/PhysRevLett.111.190401.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • ¿El próximo Einstein será un algoritmo? Nace la primera científica artificial que genera conocimiento 2 junio, 2025
    Una inteligencia artificial ha concebido, ejecutado y escrito una investigación original que ha sido aceptada en ACL 2025, uno de los foros científicos más prestigiosos del mundo. Zochi es la primera científica artificial reconocida por la élite.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Crean un "hormigón viviente" que se repara a sí mismo 2 junio, 2025
    Un equipo de investigadores ha desarrollado un tipo de concreto que puede curarse a sí mismo aprovechando el poder del liquen sintético. Mejora notablemente intentos anteriores de producir hormigón "vivo" hecho con bacterias, ya que el nuevo material logra ser completamente autosuficiente.
    Redacción T21
  • El eco cuántico del cerebro: ¿estamos entrelazados con nuestros pensamientos? 2 junio, 2025
    El entrelazamiento cuántico, la "acción fantasmal a distancia" que tanto intrigó a Einstein, podría no ser solo una rareza del microcosmos, sino que tendría un eco medible en los procesos cognitivos inconscientes mediante un aparente fenómeno “supercuántico”.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Un enorme desierto en Asia se está transformando en un vergel gracias al cambio climático 1 junio, 2025
    Los hallazgos de un nuevo estudio muestran que la ecologización del desierto de Thar ha sido impulsada principalmente por más lluvias durante las temporadas de monzones de verano, un aumento del 64% en las precipitaciones en general por el cambio climático y, en segundo lugar, por la infraestructura de riego que lleva el agua subterránea […]
    Pablo Javier Piacente / T21
  • La NASA está observando una enorme y creciente anomalía en el campo magnético de la Tierra 31 mayo, 2025
    La NASA está haciendo un seguimiento detallado de la "abolladura" o "bache" en el campo magnético terrestre descubierta en 1961, que crece rápidamente y podría ser el preludio de una inversión geomagnética: ocurre cuando los polos magnéticos norte y sur intercambian posiciones.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Los árboles pueden predecir las erupciones volcánicas 30 mayo, 2025
    La NASA, en colaboración con el Instituto Smithsonian, en Estados Unidos, está desarrollando nuevos métodos para anticipar erupciones volcánicas. Cuando el magma asciende a la superficie libera dióxido de carbono, y los árboles cercanos que absorben ese gas se vuelven más verdes y frondosos. Satélites como Landsat 8 vigilan la vegetación en zonas volcánicas, captando […]
    Pablo Javier Piacente / T21
  • Los delfines se ponen nombres "en clave" 30 mayo, 2025
    Un nuevo estudio ha identificado que los delfines no solo se dan nombres para reconocerse, sino que además estas denominaciones podrían esconder información secreta o "en clave", que estaría ligada a los sistemas sociales que sustentan el equilibrio de sus comunidades.
    Pablo Javier Piacente / T21
  • Sorprenden a una “estrella araña” devorando a su compañera 30 mayo, 2025
    Una colaboración internacional de astrónomos ha identificado un extraño sistema estelar en el que un púlsar conocido como “estrella araña” devora material de su estrella compañera, en un hallazgo que representa un eslabón perdido en la evolución de sistemas binarios compactos. 
    Redacción T21
  • Planetas a la deriva: el origen caótico de los mundos lejanos respalda la existencia del Planeta Nueve 30 mayo, 2025
    En los márgenes más remotos de los sistemas planetarios, gigantes invisibles orbitan en silencio. Un nuevo modelo sugiere que estos mundos distantes son productos inevitables del caos primordial que reina cuando las estrellas y sus planetas compiten por sobrevivir en los abarrotados viveros estelares. ¿Podría nuestro propio Sistema Solar albergar uno de estos esquivos colosos?
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Unas gafas de realidad mixta devuelven "el mundo entero" a las personas con pérdida parcial de la visión 29 mayo, 2025
    Una técnica desarrollada por oftalmólogos e informáticos canadienses devuelve la visión perdida a personas afectadas por una lesión cerebral, que han sufrido la reducción de gran parte de su campo visual. Las gafas de realidad mixta registran y "proyectan" ese sector que las personas no pueden ver con sus ojos.
    Pablo Javier Piacente / T21