Tendencias21

Siete procesos de separación química para cambiar el mundo

Dos investigadores de EE.UU. proponen al mundo académico y político que se ponga más énfasis en la mejora de los procesos industriales de separación química, que ahora son eminentemente térmicos y consumen mucha energía y producen muchos contaminantes. En concreto, analizan el potencial de mejora de siete procesos, entre ellos la obtención de hidrocarburos a partir del petróleo.

Siete procesos de separación química para cambiar el mundo

Los procesos industriales de separación química basados ​​en tecnologías térmicas, tales como la destilación, representan entre el 10 y el 15 por ciento del consumo anual de energía del mundo. Reducir el consumo de energía de las tecnologías de producción de combustibles, plásticos, alimentos y otros productos provocaría, por tanto, un gran alivio para la necesidad mundial de energía.

En un artículo-comentario publicado en la revista Nature, dos investigadores del Instituto de Tecnología de Georgia (GA Tech, EE.UU.) sugieren siete procesos de separación intensivos en energía que creen que deberían ser los objetivos principales de la investigación en tecnologías de purificación de baja energía.

Además de reducir el uso de energía, estas técnicas para separar productos químicos a partir de mezclas también reducirían la contaminación, las emisiones de dióxido de carbono, y abrirían nuevas formas de obtener recursos cruciales que el mundo necesita.

Las tecnologías aplicables a esos procesos de separación se encuentran en distintas etapas de desarrollo, señalan los autores. Estos procesos alternativos están poco desarrollados, y hacerlos viables para su uso a gran escala podría requerir una importante inversión en investigación y desarrollo.

Grandes recompensas potenciales

«Queríamos poner de relieve cómo la mayor parte de la energía del mundo se utiliza para las separaciones químicas y apuntar algunas áreas en las que podrían realizarse grandes avances», dice David Sholl, uno de los autores del artículo, en la información de GA. «Estos procesos son en gran medida invisibles para la mayoría de la gente, pero hay grandes recompensas potenciales en su mejora».

En los Estados Unidos, podrían reducirse los costes de energía en 4 mil millones de dólares al año sólo en los sectores del petróleo, químico y de fabricación de papel. También hay potencial para reducir las emisiones de dióxido de carbono en 100 millones de toneladas por año.

«Las separaciones químicas representan aproximadamente la mitad de todo el consumo energético industrial de EE.UU.», señala el profesor Ryan Lively. «El desarrollo de alternativas que no utilizan el calor podría mejorar drásticamente la eficiencia del 80 por ciento de los procesos de separación que ahora utilizamos.»

 Sholl y Lively sugieren cuatro pasos que podrían dar los investigadores académicos y los políticos para ayudar a expandir el uso de técnicas de separación no térmicas:

-En la investigación, considerar mezclas químicas realistas que reflejen las condiciones del mundo real.
-Evaluar la economía y la sostenibilidad de cualquier técnica de separación.
-Tener en cuenta la escala a la que tendrá que desplegarse la tecnología para la industria. -Entrenar aún más a los químicos y a los ingenieros químicos en técnicas de separación que no requieren destilación.

La lista

-Hidrocarburos del petróleo crudo. Las refinerías utilizan principalmente la destilación atmosférica (a la presión de la atmósfera), que implica calentar el petróleo y luego capturar los diferentes compuestos a medida que se evaporan en diferentes puntos de ebullición. Encontrar alternativas es difícil porque el petróleo es complejo químicamente y debe ser mantenido a altas temperaturas para mantener su fluidez, dada su consistencia.

-Uranio del agua de mar. Existen más de cuatro millones de toneladas de uranio en el agua del océano, pero separarlo es complicado por la presencia de metales tales como vanadio y cobalto, imposibles de separar del uranio con las tecnologías existentes. Sí hay procesos que lo consiguen a escalas pequeñas, pero no a escalas grandes.

-Alquenos a partir de alcanos. La producción de algunos tipos de plástico requieren alquenos: hidrocarburos como etano y propeno, cuya producción anual es superior a 200 millones de toneladas. La separación de eteno a partir de etano, por ejemplo, requiere normalmente destilación criogénica de alta presión a temperaturas bajas. Las técnicas de separación híbridas que utilizan una combinación de membranas y de destilación podrían reducir el consumo de energía en un factor de dos o tres, pero podrían ser necesarios grandes volúmenes de materiales de membrana -hasta un millón de metros cuadrados en una sola planta química- para escalarlas.

-Gases de efecto invernadero de las emisiones diluidas. La emisión de dióxido de carbono e hidrocarburos como el metano contribuye al cambio climático global. La eliminación de estos compuestos a partir de fuentes diluidas, tales como las emisiones de plantas de energía, se puede hacer usando materiales líquidos de amina, pero la eliminación del dióxido de carbono a partir de ese material requiere calor. Se necesitan métodos menos costosos.

-Metales de tierras raras a partir de minerales. Los elementos tierras raras se utilizan en los imanes, catalizadores y la iluminación de alta eficiencia. Aunque estos materiales en realidad no son raros, su obtención es difícil porque existen en cantidades muy pequeñas que deben separarse de los minerales mediante procesos mecánicos y químicos complejos.

-Derivados de benceno entre sí. El benceno y sus derivados son esenciales para la producción de muchos polímeros, plásticos, fibras, disolventes y aditivos de combustible. Estas moléculas se separan usando columnas de destilación con un consumo de energía anual combinado de alrededor de 50 gigavatios. Desarrollar las membranas o absorbentes podría reducir significativamente esa inversión en energía.

-Rastrear los contaminantes del agua. La desalinización es ya crucial para satisfacer la necesidad de agua dulce en algunas partes del mundo, pero el proceso es intensivo a la vez en capital y energía, independientemente de si se utilizan procesos de membrana o de destilación. El desarrollo de membranas que son más productivas y resistentes a la suciedad podría reducir los costes.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Oleada cósmica: cinco asteroides rozan la Tierra en solo cuatro días 3 junio, 2025
    Cinco rocas espaciales pasarán a millones de kilómetros de nuestro planeta en apenas cuatro días, con el 4 de junio como jornada clave. No representan peligro, pero ofrecen una oportunidad única para la ciencia.
    Redacción T21
  • Estados Unidos crea una "máquina del tiempo científica", capaz de condensar en días décadas de investigación 3 junio, 2025
    El próximo superordenador Doudna, que Estados Unidos tendrá operativo en 2026, está diseñado para ser el catalizador de una nueva era de descubrimientos, transformando la forma en que abordamos desde los misterios del cosmos hasta las complejidades de la vida misma.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Se revela una estructura oculta al borde del Sol 3 junio, 2025
    La atmósfera exterior del Sol, conocida como corona solar, ha revelado recientemente detalles asombrosos gracias a avances en óptica adaptativa y técnicas de observación de alto contraste. Un equipo internacional de científicos ha logrado capturar las imágenes más nítidas hasta la fecha de la corona solar, mostrando fenómenos como las “gotas de lluvia” solares y […]
    Redacción T21
  • Dormir mal puede estar relacionado con problemas en la audición 2 junio, 2025
    Una investigación realizada en China y otros estudios recientes sugieren que las patologías del sueño, como el insomnio, el trastorno del movimiento periódico de las extremidades y la apnea del sueño podrían estar relacionados con la pérdida auditiva.
    Pablo Javier Piacente / T21
  • Un tatuaje electrónico puede leer los niveles de estrés 2 junio, 2025
    Un nuevo tatuaje electrónico portátil y ultradelgado que se coloca en la frente de forma no invasiva monitorea de manera inalámbrica la actividad cerebral, rastrea la carga cognitiva en tiempo real y potencialmente predice la fatiga mental y el estrés antes que se haga evidente.
    Pablo Javier Piacente / T21
  • ¿El próximo Einstein será un algoritmo? Nace la primera científica artificial que genera conocimiento 2 junio, 2025
    Una inteligencia artificial ha concebido, ejecutado y escrito una investigación original que ha sido aceptada en ACL 2025, uno de los foros científicos más prestigiosos del mundo. Zochi es la primera científica artificial reconocida por la élite.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Crean un "hormigón viviente" que se repara a sí mismo 2 junio, 2025
    Un equipo de investigadores ha desarrollado un tipo de concreto que puede curarse a sí mismo aprovechando el poder del liquen sintético. Mejora notablemente intentos anteriores de producir hormigón "vivo" hecho con bacterias, ya que el nuevo material logra ser completamente autosuficiente.
    Redacción T21
  • El eco cuántico del cerebro: ¿estamos entrelazados con nuestros pensamientos? 2 junio, 2025
    El entrelazamiento cuántico, la "acción fantasmal a distancia" que tanto intrigó a Einstein, podría no ser solo una rareza del microcosmos, sino que tendría un eco medible en los procesos cognitivos inconscientes mediante un aparente fenómeno “supercuántico”.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Un enorme desierto en Asia se está transformando en un vergel gracias al cambio climático 1 junio, 2025
    Los hallazgos de un nuevo estudio muestran que la ecologización del desierto de Thar ha sido impulsada principalmente por más lluvias durante las temporadas de monzones de verano, un aumento del 64% en las precipitaciones en general por el cambio climático y, en segundo lugar, por la infraestructura de riego que lleva el agua subterránea […]
    Pablo Javier Piacente / T21
  • La NASA está observando una enorme y creciente anomalía en el campo magnético de la Tierra 31 mayo, 2025
    La NASA está haciendo un seguimiento detallado de la "abolladura" o "bache" en el campo magnético terrestre descubierta en 1961, que crece rápidamente y podría ser el preludio de una inversión geomagnética: ocurre cuando los polos magnéticos norte y sur intercambian posiciones.
    EDUARDO MARTÍNEZ DE LA FE/T21