Tendencias21

Un único fotón provoca el entrelazamiento cuántico de 16 millones de átomos

Investigadores de la Universidad de Ginebra han demostrado el entrelazamiento cuántico de 16 millones de átomos en el interior de un cristal de un centímetro atravesado por un único fotón, confirmando por vez primera la teoría sobre la que se basan las redes cuánticas del futuro.

Un único fotón provoca el entrelazamiento cuántico de 16 millones de átomos

La teoría cuántica predice que un gran número de átomos pueden estar entrelazados, vinculados por una relación cuántica muy poderosa, incluso en una estructura macroscópica. Sin embargo, las pruebas experimentales de esta teoría han sido escasas, incluso si recientes progresos han permitido comprobar el entrelazamiento cuántico de 2.900 átomos.

Dándole vueltas al tratamiento de los datos obtenidos de sus observaciones, investigadores de la Universidad de Ginebra (UNIGE) han cambiado de escala y comprobado el entrelazamiento cuántico de 16 millones de átomos en el interior de un cristal de un centímetro. Los resultados se publican en  Nature Communications.

Las leyes de la física cuántica permiten actualmente emitir señales cuya intercepción por un tercero sería detectada instantáneamente. Esta propiedad es esencial para la protección de datos y más específicamente para la criptografía, que permite garantizar que los mensajes intercambiados entre dos personas no pueden ser interceptados por el camino.

Lo que le faltaba a esta tecnología es que esas señales puedan recorrer largas distancias gracias a apoyos un poco particulares, llamados repetidores cuánticos, de los que este grupo de investigadores, tal como informamos en otro artículo, han sido pioneros. Estos repetidores cuánticos son cristales cuyos átomos están unidos por el así llamado entrelazamiento cuántico.

En esencia, el entrelazamiento cuántico se produce cuando partículas tales como fotones o electrones interactúan físicamente y luego se separan, pero siguen estando íntimamente conectadas, incluso si están a miles de kilómetros de distancia, de tal forma que  cualquier modificación deliberada en una partícula, se refleja instantáneamente en la otra.

Cuando un fotón penetra en este pequeño recinto de cristal enriquecido con átomos de elementos químicos conocidos como “tierras raras” (que agrupan el escandio, el itrio y los 15 elementos del grupo de los lantánidos), y enfriados a 270 grados bajo cero, tres grados por encima del cero absoluto, el fotón crea el entrelazamiento cuántico entre los millones de átomos del cristal, cuando son atravesados por el fotón.

La teoría predice con absoluta certeza que este fenómeno se produce realmente, ya que el cristal cumple su función y reenvía sin leer la información que ha recibido, en forma de fotón único.

Vía indirecta

Pero aunque es relativamente sencillo entrelazar dos partículas, ya que la escisión de un fotón genera por ejemplo dos fotones entrelazados cuánticamente, con propiedades y comportamientos idénticos, es imposible observar directamente un fenómeno de entrelazamiento entre varios millones de átomos, ya que la masa de datos que sería necesario reunir y analizar es muy importante, explica Florian Fröwis, uno de los investigadores, en un comunicado.

Para resolver esta dificultad, Fröwis y sus colaboradores han elegido una vía indirecta, preguntándose en primer lugar qué medidas se pueden realizar y luego, de entre todas ellas, determinar cuáles son pertinentes.

Los investigadores se han centrado en las características de la luz reenviada por el cristal, analizando sus propiedades estadísticas y las probabilidades que les acompañan, trazando dos índices principales: que la luz sea realmente reenviada en una única dirección (más que dispersarse en un rayo a partir del cristal) y que la emisión de esa luz esté constituida por un fotón único.

De esta forma, han podido demostrar el entrelazamiento cuántico de 16 millones de átomos, donde hasta ahora observaciones precedentes sólo habían podido determinar unos miles de entrelazamientos.

Aunque otro grupo de científicos de la Universidad de Calgary, en Canadá, ha demostrado en el pasado el entrelazamiento de numerosos grupos de átomos, según explica Mikael Afzelius, otro de los investigadores suizos, para conseguir su resultado no han cambiado las leyes de la física, sino que han cambiado la forma de tratar el flujo de datos.

El entrelazamiento cuántico es uno de los requisitos básicos de la revolución cuántica en puertas que afectará tanto al volumen de información que puede circular por las redes del futuro, como a la potencia y modo de funcionamiento de los ordenadores cuánticos, destacan los investigadores.

Todo este futuro se basa en la relación que existe entre dos partículas a nivel cuántico, una relación mucho más fuerte que las simples correlaciones que propone la física clásica.

Referencia

Experimental certification of millions of genuinely entangled atoms in a solid. Nature Communications 8, Article number: 907 (2017). DOI:10.1038/s41467-017-00898-6 

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Los recuerdos imborrables se adhieren a algunas neuronas 28 junio, 2024
    Los científicos han descubierto una explicación biológica para los recuerdos a largo plazo, esos que acompañan a una persona prácticamente durante toda la vida. Revelaron que una molécula, KIBRA, sirve como “pegamento” para otras moléculas, consolidando así la formación de la memoria al activar y mantener una etiqueta sináptica persistente, que queda adherida a un […]
    Pablo Javier Piacente
  • Descubren un boquete de seguridad que afecta a todos los dispositivos y conexiones a Internet 28 junio, 2024
    Una vulnerabilidad de seguridad, que afecta a todas las conexiones y dispositivos de Internet, puede eludir firewalls, VPN y otras herramientas de seguridad y permite espiar a cualquier persona, sin necesidad de código malicioso o acceso al dispositivo. No existe una manera fácil de solucionar este problema de seguridad.
    Redacción T21
  • Crean bebés digitales para mejorar la atención sanitaria 27 junio, 2024
    Un equipo de investigadores desarrolló modelos informáticos que simulan los procesos metabólicos únicos de cada bebé: los “gemelos digitales” pueden ayudar a comprender mejor las enfermedades metabólicas raras y otros desafíos que enfrentan los bebés humanos durante los primeros 6 meses de vida, que son críticos para su crecimiento posterior.
    Pablo Javier Piacente
  • La similitud de los vientos espaciales con los de la Tierra 27 junio, 2024
    Los científicos han descubierto corrientes en el espacio que reflejan de manera inquietante los vientos que giran cerca de la superficie de la Tierra, lo que sugiere fuerzas ocultas que los conectan. Este nuevo conocimiento podría proporcionarnos una mejor comprensión de los sistemas ambientales que circulan alrededor del globo y mejorar los pronósticos meteorológicos espaciales […]
    Pablo Javier Piacente
  • Los archivos geológicos anticipan nuestro futuro climático 27 junio, 2024
    Hace 56 millones de años, la erosión del suelo se cuadruplicó en el planeta debido a las fuertes lluvias y las inundaciones de los ríos provocadas por un calentamiento global muy similar al que conocemos hoy.
    Eduardo Martínez de la Fe
  • Ya es posible transmitir el tacto a través de Internet 26 junio, 2024
    Un nuevo estándar para la compresión y transmisión del sentido del tacto mediante Internet sienta las bases para la telecirugía, la teleconducción y nuevas experiencias de juego en línea, entre otras aplicaciones. El flamante estándar HCTI (Haptic Codecs for the Tactile Internet) es para el “tacto digital” lo que son JPEG, MP3 y MPEG para […]
    Pablo Javier Piacente
  • Las primeras muestras de la cara oculta de la Luna ya están en la Tierra 26 junio, 2024
    La cápsula de reingreso de la sonda Chang'e-6 de China, que transporta hasta dos kilogramos de materiales extraídos y perforados de la cuenca más antigua de la Luna ubicada en su lado oscuro, aterrizó este martes 25 de junio en la región de Mongolia Interior y fue rápidamente recuperada, según informó la Administración Nacional del […]
    Pablo Javier Piacente
  • La Tierra tendrá dos soles dentro de 1,3 millones de años y durante 60.000 años 26 junio, 2024
    Dentro de 1,3 millones de años, la Tierra tendrá una especie de segundo sol porque la estrella Gliese 710 se acercará a 1,1 años luz de la Tierra y la veríamos del mismo tamaño que Júpiter. Lo malo es que esa alteración cósmica puede provocar un episodio en nuestro planeta como el que acabó con […]
    Eduardo Martínez de la Fe
  • China descubre grafeno natural en la Luna 25 junio, 2024
    Investigadores chinos han descubierto recientemente grafeno natural de escasas capas por primera vez en la Luna, a partir de las muestras traídas a la Tierra por la sonda Chang'e 5. El hallazgo proporciona nuevos conocimientos sobre las actividades geológicas, la historia evolutiva y las características ambientales de la Luna.
    Pablo Javier Piacente
  • Los incendios forestales extremos se duplicaron en los últimos 20 años en todo el planeta 25 junio, 2024
    Una nueva investigación concluye que la frecuencia e intensidad de los incendios forestales extremos se ha más que duplicado en todo el mundo en las últimas dos décadas, debido al calentamiento global antropogénico y otros factores relacionados. Se trata de la primera ocasión en la cual los científicos pudieron trazar una tendencia global para los […]
    Pablo Javier Piacente