Tendencias21

Una piel artificial distingue la presión ejercida sobre ella

Ingenieros de la Universidad Stanford (EE.UU.) han diseñado una piel de plástico que puede detectar la fuerza con la que está siendo presionada y generar una señal eléctrica para enviar esta información sensorial directamente a una célula de cerebro viva. Para ello utilizan nanotubos de carbono integrados en el plástico. La piel creada, sin embargo, no puede diferenciar aún texturas y temperaturas.

Una piel artificial distingue la presión ejercida sobre ella

Ingenieros de la Universidad Stanford (California, EE.UU.) han creado una «piel» de plástico que puede detectar la fuerza con la que está siendo presionada y generar una señal eléctrica para enviar esta información sensorial directamente a una célula de cerebro viva.

Zhenan Bao, profesora de ingeniería química en Stanford, ha pasado una década tratando de desarrollar un material que imite la capacidad de la piel para flexionarse y sanar, al tiempo que sirva como red de sensores que envía señales táctiles, de temperatura y de dolor al cerebro. En última instancia quiere crear un tejido electrónico flexible con sensores integrados que pueda cubrir una prótesis y replicar algunas de las funciones sensoriales de la piel.

El trabajo de Bao, publicado en Science, da un paso más hacia su objetivo mediante la replicación de un aspecto del tacto, el mecanismo sensorial que nos permite distinguir la diferencia de presión entre un apretón de manos débil y un agarre firme.

«Esta es la primera vez que un material flexible, similar a la piel, ha sido capaz de detectar la presión y también transmitir una señal a un componente del sistema nervioso», dice Bao, que dirigió el equipo de investigación de 17 personas responsables del logro, en la información de Stanford.

Benjamin Tee, reciente doctor en ingeniería eléctrica; Alex Chortos, doctorando en ciencia de materiales e ingeniería; y Andre Berndt, postdoc en bioingeniería, son los autores principales del artículo.

Capas

El corazón de la técnica es una construcción de plástico de dos capas: la capa superior crea un mecanismo de detección y la capa inferior actúa como el circuito para transportar señales eléctricas y traducirlas en estímulos bioquímicos compatibles con las células nerviosas. La capa superior en este nuevo trabajo contó con un sensor que puede detectar la presión en el mismo rango que la piel humana, de un ligero golpe con el dedo a un firme apretón de manos.

Hace cinco años, los miembros del equipo de Bao describieron por primera vez cómo utilizar plásticos y cauchos como sensores de presión mediante la medición de la elasticidad natural de sus estructuras moleculares. A continuación incrementaron esta sensibilidad natural a la presión creando un patrón de gofre en el delgado plástico, que comprime aún más los resortes moleculares del mismo.

Para explotar esta capacidad de detectar la presión electrónicamente, el equipo dispersó miles de millones de nanotubos de carbono a lo largo del plástico gofreado. Poner presión sobre el plástico aprieta los nanotubos entre sí y les permite conducir la electricidad.

Esto permitió que el sensor de plástico imitara la piel humana, transmitiendo información de presión al cerebro en forma de pulsos cortos de electricidad, similares al código Morse. El aumento de presión sobre los nanotubos les acerca entre sí, permitiendo que más electricidad fluya a través del sensor, y los impulsos se envíen como pulsos cortos al mecanismo de detección. Si se quita la presión y el flujo de pulsos se relaja, quiere decir que el toque es ligero. Si se quita toda la presión, los pulsos cesan por completo.

Posteriormente, el equipo enganchó este mecanismo de detección de presión a la segunda capa de la piel artificial, un circuito electrónico flexible que podía llevar impulsos eléctricos a las células nerviosas.

Importación de la señal

El equipo de Bao ha estado desarrollando electrónica flexible que puede doblarse sin romperse. Para este proyecto, los miembros del equipo trabajaron con investigadores de Parc, una compañía de Xerox, que cuenta con una tecnología que utiliza una impresora de inyección de tinta para depositar circuitos flexibles en plástico. Cubrir una superficie grande es importante para hacer piel artificial práctica, y la colaboración de Parc ofreció esa posibilidad.

Por último, el equipo tuvo que probar que la señal electrónica puede ser reconocida por una neurona biológica. Lo hizo mediante la adaptación de una técnica desarrollada por Karl Deisseroth, profesor de bioingeniería en Stanford, que fue pionero en un campo que combina la genética y la óptica, llamado optogenética. Los investigadores rediseñan células para que sean sensibles a frecuencias de luz específicas, y a continuación, utilizan pulsos de luz para apagar o encender las células o los procesos que ocurren dentro de ellas.

Para este experimento los miembros del equipo diseñaron una línea de neuronas que simulan una parte del sistema nervioso humano. Tradujeron las señales de presión electrónicas de la piel artificial en impulsos de luz, que activaron las neuronas, lo que demuestra que la piel artificial podría generar una emisión sensorial compatible con las células nerviosas.

La optogenética fue utilizada solamente como prueba de concepto, dice Bao, y es posible que utilicen otros métodos de estimulación de los nervios en dispositivos protésicos reales. El equipo de Bao ya ha trabajado con Bianxiao Cui, profesora de química en Stanford, para demostrar que la estimulación directa de las neuronas con pulsos eléctricos es posible.

El equipo de Bao prevé el desarrollo de diferentes sensores para replicar, por ejemplo, la capacidad de distinguir la pana frente a la seda (textura), o un vaso de agua fría de una taza de café caliente (temperatura). Esto tomará tiempo. Hay seis tipos de mecanismos biológicos de detección en la mano del ser humano, y el experimento descrito en Science ha tenido éxito en tan sólo uno de ellos.

Pero el enfoque de dos capas actual significa que el equipo puede añadir sensaciones a medida que desarrolla nuevos mecanismos. Y el proceso de fabricación por impresión con inyección de tinta sugiere cómo una red de sensores podría depositarse sobre una capa flexible y plegada sobre una prótesis de mano.

«Tenemos mucho trabajo para llevar esto desde los experimental a las aplicaciones prácticas», dice Bao. «Pero después de pasar muchos años con este trabajo, ahora veo un camino claro para llegar a nuestra piel artificial.»

Precedentes

Otros grupos de investigación han desarrollado pieles artificiales, como los del Instituto Nacional de Ciencia y Tecnología Ulsan (UNIST), de la República de Corea, que informaron hace un año de haber creado una piel capaz de detectar no solo la presión, sino también en qué dirección viene esta.

Además, hace unos meses se dio a conocer una técnica pionera desarrollada en la Universidad de Exeter, en el Reino Unido, que permite una producción de bajo coste y alta calidad del grafeno, que favoreció el desarrollo del primer sensor táctil para crear una piel electrónica verdaderamente flexible.

Referencia bibliográfica:

B.C.K. Tee et al.: A skin-inspired organic digital mechanoreceptor. Science (2015). DOI: 10.1126/science.aaa9306.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Una pequeña luna de Saturno parecida a la “Estrella de la Muerte” de Star Wars contiene un océano oculto 8 febrero, 2024
    Por debajo de la superficie repleta de cráteres de Mimas, una de las lunas más pequeñas de Saturno, se esconde un océano global de agua líquida de reciente formación. El satélite posee tan sólo unos 400 kilómetros de diámetro y presenta un notable parecido con la “Estrella de la Muerte”, una estación espacial imperial que […]
    Pablo Javier Piacente
  • Logran controlar un objeto virtual con la mente durante un sueño lúcido 8 febrero, 2024
    Un grupo de participantes en un nuevo estudio científico logró manejar un vehículo virtual a través de un avatar únicamente con su mente, mientras sus cerebros permanecían en la fase REM del sueño. Además de profundizar en los misterios de la consciencia humana, la innovación podría facilitar el acceso a nuevos desarrollos tecnológicos, como un […]
    Pablo Javier Piacente
  • Un proyecto global trabaja para crear de forma colaborativa un cerebro robótico general 8 febrero, 2024
    El auge de la inteligencia artificial generativa impulsa un proyecto global que trabaja para crear un cerebro robótico general, capaz de generar androides como los que hemos visto hasta ahora solo en la ciencia ficción. Pero es cuestión de tiempo que convivamos con ellos en perfecta armonía. Ya no es una utopía.
    Eduardo Martínez de la Fe
  • La IA está capacitada para resolver dilemas morales cuando conduce vehículos autónomos 8 febrero, 2024
    Los sistemas de IA muestran significativas similitudes éticas con las reacciones humanas ante dilemas morales, lo que los acreditan para conducir vehículos autónomos tal como lo harían las personas.
    Redacción T21
  • Los huracanes se están volviendo tan fuertes que ya no existen categorías para clasificarlos 7 febrero, 2024
    Cinco tormentas en la última década tuvieron velocidades de viento que pertenecen a una hipotética categoría 6 en la escala de huracanes Saffir-Simpson: el fenómeno obligaría a los científicos a crear una nueva clasificación, capaz de reflejar la virulencia de los huracanes en la actualidad. Las causas principales del fenómeno tienen su origen en el […]
    Pablo Javier Piacente
  • Un asteroide habría explotado sobre la Antártida hace unos 2,5 millones de años 7 febrero, 2024
    Un asteroide se desintegró sobre el continente antártico hace aproximadamente 2,5 millones de años: la evidencia proviene de un análisis químico de más de 100 pequeños trozos de roca extraterrestre, que se han preservado dentro de las enormes capas de hielo. Hasta el momento, solo se conocen otros dos eventos de explosiones aéreas antiguas en […]
    Pablo Javier Piacente
  • Crean la primera niña de inteligencia artificial del mundo 7 febrero, 2024
    La primera niña IA del mundo ha sido creada por científicos chinos, que la han dotado de emociones e intelecto y de la capacidad de aprender de forma autónoma. Se comporta como si tuviera tres o cuatro años y representa un avance significativo para el campo de la inteligencia artificial general.
    Redacción T21
  • Oponerse a la regulación de los pesticidas no es la solución al problema de los agricultores 7 febrero, 2024
    Los agricultores que se movilizan en España y Europa se oponen con firmeza a las nuevas regulaciones europeas en materia de pesticidas, lo que representa una amenaza mayor para la salud pública que tener una central nuclear al lado de casa: estos químicos han costado miles de vidas y enfermos crónicos, al tiempo que han […]
    Eduardo Costas | Catedrático de la UCM y Académico de Farmacia
  • El arte existió antes del surgimiento de los humanos modernos 6 febrero, 2024
    Nuevas investigaciones sugieren que nuestros parientes humanos arcaicos, como los neandertales, ya contaban con las capacidades cognitivas para desarrollar arte: el hallazgo de ejemplos cada vez más antiguos de expresión artística en el registro arqueológico confirmaría esta hipótesis. Sin embargo, aún se discute si estas manifestaciones creativas pueden catalogarse como arte.
    Pablo Javier Piacente
  • Descubren una nueva supertierra que podría ser un mundo habitable 6 febrero, 2024
    Un planeta extrasolar del tipo supertierra, denominado TOI-715 b y aproximadamente una vez y media más ancho que la Tierra, podría ser capaz de albergar vida: orbita dentro de la zona habitable de una enana roja, a escasa distancia de nuestro planeta. Además, podría estar acompañado de otro cuerpo planetario, con un tamaño casi idéntico al […]
    Pablo Javier Piacente