Tendencias21

Una piel artificial distingue la presión ejercida sobre ella

Ingenieros de la Universidad Stanford (EE.UU.) han diseñado una piel de plástico que puede detectar la fuerza con la que está siendo presionada y generar una señal eléctrica para enviar esta información sensorial directamente a una célula de cerebro viva. Para ello utilizan nanotubos de carbono integrados en el plástico. La piel creada, sin embargo, no puede diferenciar aún texturas y temperaturas.

Una piel artificial distingue la presión ejercida sobre ella

Ingenieros de la Universidad Stanford (California, EE.UU.) han creado una «piel» de plástico que puede detectar la fuerza con la que está siendo presionada y generar una señal eléctrica para enviar esta información sensorial directamente a una célula de cerebro viva.

Zhenan Bao, profesora de ingeniería química en Stanford, ha pasado una década tratando de desarrollar un material que imite la capacidad de la piel para flexionarse y sanar, al tiempo que sirva como red de sensores que envía señales táctiles, de temperatura y de dolor al cerebro. En última instancia quiere crear un tejido electrónico flexible con sensores integrados que pueda cubrir una prótesis y replicar algunas de las funciones sensoriales de la piel.

El trabajo de Bao, publicado en Science, da un paso más hacia su objetivo mediante la replicación de un aspecto del tacto, el mecanismo sensorial que nos permite distinguir la diferencia de presión entre un apretón de manos débil y un agarre firme.

«Esta es la primera vez que un material flexible, similar a la piel, ha sido capaz de detectar la presión y también transmitir una señal a un componente del sistema nervioso», dice Bao, que dirigió el equipo de investigación de 17 personas responsables del logro, en la información de Stanford.

Benjamin Tee, reciente doctor en ingeniería eléctrica; Alex Chortos, doctorando en ciencia de materiales e ingeniería; y Andre Berndt, postdoc en bioingeniería, son los autores principales del artículo.

Capas

El corazón de la técnica es una construcción de plástico de dos capas: la capa superior crea un mecanismo de detección y la capa inferior actúa como el circuito para transportar señales eléctricas y traducirlas en estímulos bioquímicos compatibles con las células nerviosas. La capa superior en este nuevo trabajo contó con un sensor que puede detectar la presión en el mismo rango que la piel humana, de un ligero golpe con el dedo a un firme apretón de manos.

Hace cinco años, los miembros del equipo de Bao describieron por primera vez cómo utilizar plásticos y cauchos como sensores de presión mediante la medición de la elasticidad natural de sus estructuras moleculares. A continuación incrementaron esta sensibilidad natural a la presión creando un patrón de gofre en el delgado plástico, que comprime aún más los resortes moleculares del mismo.

Para explotar esta capacidad de detectar la presión electrónicamente, el equipo dispersó miles de millones de nanotubos de carbono a lo largo del plástico gofreado. Poner presión sobre el plástico aprieta los nanotubos entre sí y les permite conducir la electricidad.

Esto permitió que el sensor de plástico imitara la piel humana, transmitiendo información de presión al cerebro en forma de pulsos cortos de electricidad, similares al código Morse. El aumento de presión sobre los nanotubos les acerca entre sí, permitiendo que más electricidad fluya a través del sensor, y los impulsos se envíen como pulsos cortos al mecanismo de detección. Si se quita la presión y el flujo de pulsos se relaja, quiere decir que el toque es ligero. Si se quita toda la presión, los pulsos cesan por completo.

Posteriormente, el equipo enganchó este mecanismo de detección de presión a la segunda capa de la piel artificial, un circuito electrónico flexible que podía llevar impulsos eléctricos a las células nerviosas.

Importación de la señal

El equipo de Bao ha estado desarrollando electrónica flexible que puede doblarse sin romperse. Para este proyecto, los miembros del equipo trabajaron con investigadores de Parc, una compañía de Xerox, que cuenta con una tecnología que utiliza una impresora de inyección de tinta para depositar circuitos flexibles en plástico. Cubrir una superficie grande es importante para hacer piel artificial práctica, y la colaboración de Parc ofreció esa posibilidad.

Por último, el equipo tuvo que probar que la señal electrónica puede ser reconocida por una neurona biológica. Lo hizo mediante la adaptación de una técnica desarrollada por Karl Deisseroth, profesor de bioingeniería en Stanford, que fue pionero en un campo que combina la genética y la óptica, llamado optogenética. Los investigadores rediseñan células para que sean sensibles a frecuencias de luz específicas, y a continuación, utilizan pulsos de luz para apagar o encender las células o los procesos que ocurren dentro de ellas.

Para este experimento los miembros del equipo diseñaron una línea de neuronas que simulan una parte del sistema nervioso humano. Tradujeron las señales de presión electrónicas de la piel artificial en impulsos de luz, que activaron las neuronas, lo que demuestra que la piel artificial podría generar una emisión sensorial compatible con las células nerviosas.

La optogenética fue utilizada solamente como prueba de concepto, dice Bao, y es posible que utilicen otros métodos de estimulación de los nervios en dispositivos protésicos reales. El equipo de Bao ya ha trabajado con Bianxiao Cui, profesora de química en Stanford, para demostrar que la estimulación directa de las neuronas con pulsos eléctricos es posible.

El equipo de Bao prevé el desarrollo de diferentes sensores para replicar, por ejemplo, la capacidad de distinguir la pana frente a la seda (textura), o un vaso de agua fría de una taza de café caliente (temperatura). Esto tomará tiempo. Hay seis tipos de mecanismos biológicos de detección en la mano del ser humano, y el experimento descrito en Science ha tenido éxito en tan sólo uno de ellos.

Pero el enfoque de dos capas actual significa que el equipo puede añadir sensaciones a medida que desarrolla nuevos mecanismos. Y el proceso de fabricación por impresión con inyección de tinta sugiere cómo una red de sensores podría depositarse sobre una capa flexible y plegada sobre una prótesis de mano.

«Tenemos mucho trabajo para llevar esto desde los experimental a las aplicaciones prácticas», dice Bao. «Pero después de pasar muchos años con este trabajo, ahora veo un camino claro para llegar a nuestra piel artificial.»

Precedentes

Otros grupos de investigación han desarrollado pieles artificiales, como los del Instituto Nacional de Ciencia y Tecnología Ulsan (UNIST), de la República de Corea, que informaron hace un año de haber creado una piel capaz de detectar no solo la presión, sino también en qué dirección viene esta.

Además, hace unos meses se dio a conocer una técnica pionera desarrollada en la Universidad de Exeter, en el Reino Unido, que permite una producción de bajo coste y alta calidad del grafeno, que favoreció el desarrollo del primer sensor táctil para crear una piel electrónica verdaderamente flexible.

Referencia bibliográfica:

B.C.K. Tee et al.: A skin-inspired organic digital mechanoreceptor. Science (2015). DOI: 10.1126/science.aaa9306.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • La acidez cerebral podría estar relacionada con múltiples trastornos neurológicos 11 abril, 2024
    Un estudio en animales a gran escala vincula los cambios en el pH del cerebro con problemas cognitivos de amplio alcance, ligados a patologías como el autismo o el Alzheimer, entre otras. Los científicos creen que los problemas metabólicos en el cerebro podrían estar directamente relacionados con una variedad de trastornos neuropsiquiátricos y neurodegenerativos.
    Pablo Javier Piacente
  • Cultivan organoides cerebrales con conexiones neuronales similares a las de un cerebro real 11 abril, 2024
    Un equipo internacional de investigadores ha desarrollado una técnica para conectar tejidos cultivados en laboratorio que imitan al cerebro humano de una manera que se asemeja a los circuitos neuronales del cerebro real. El "sistema" de mini cerebros interconectados podría revolucionar nuestra comprensión de las funciones cerebrales.
    Pablo Javier Piacente
  • Los Estados se exponen a condenas judiciales por inacción climática 11 abril, 2024
    Suiza es el primer Estado condenado judicialmente por no resolver el desafío climático y violar los derechos humanos de las personas mayores. Hace un año, 16 niños y jóvenes obtuvieron una sentencia condenatoria contra el Estado de Montana por destruir con sus leyes el medioambiente. Cualquier Estado puede ser denunciado si no preserva el ambiente en […]
    Eduardo Martínez de la Fe
  • Detectan extraños pulsos de radio procedentes de un magnetar que desconciertan a los científicos 10 abril, 2024
    Los astrónomos han detectado señales de radio inusuales procedentes de XTE J1810-197, un radiomagnetar o estrella de neutrones ultramagnética situada a 8.100 años luz de distancia de la Tierra, en la constelación de Sagitario. Los resultados son inesperados y sin precedentes: a diferencia de las señales de radio que se han detectado en otros magnetares, […]
    Pablo Javier Piacente
  • La IA podría ser el límite para todas las civilizaciones avanzadas en el Universo 10 abril, 2024
    Un nuevo estudio sugiere que el desarrollo de la Inteligencia Artificial (IA) hacia una Superinteligencia Artificial (ASI) podría explicar por qué no hemos detectado aún otras civilizaciones avanzadas en el cosmos, a pesar de la alta probabilidad de su existencia: en vez de supernovas, plagas, guerras nucleares o eventos climáticos extremos que hayan sido un […]
    Pablo Javier Piacente
  • Higgs ha podido dejar abierta la puerta a la Nueva Física 10 abril, 2024
    La muerte de Peter Higgs, que pasará a la historia como el descubridor del bosón que explica cómo se forma la materia, deja un legado en la historia de la física que todavía puede aportar algo más trascendente: la prueba definitiva de una Nueva Física más allá del Modelo Estándar.
    Eduardo Martínez de la Fe
  • Descubren neuronas "zombis" en el cerebro, que serían claves en el proceso de aprendizaje 9 abril, 2024
    Las neuronas "zombis" son unidades vivas pero funcionalmente alteradas, que parecen "dormidas" en determinadas situaciones: los investigadores han revelado que cumplen un papel fundamental en el cerebelo, concretamente en aspectos relativos a la forma en la cual aprendemos.
    Pablo Javier Piacente
  • La Luna se invirtió por completo hace más de 4 mil millones de años 9 abril, 2024
    Hace unos 4.220 millones de años, poco después de que la Luna se formara a partir de un trozo de la Tierra que se desprendió durante una colisión violenta a principios de la historia del Sistema Solar, nuestro satélite se dio vuelta y comenzó así una etapa clave de su desarrollo. Así lo ha comprobado […]
    Pablo Javier Piacente
  • Arte rupestre de hace 2.000 años podría representar música psicodélica 9 abril, 2024
    Aunque la música psicodélica moderna no nació hasta la década de 1960, las influencias psicodélicas se pueden encontrar en el arte rupestre de hace miles de años. Grabados precolombinos en piedra, de 2.000 años de antigüedad, reflejan figuras humanas bailando en estado de trance chamánico.
    Redacción T21
  • Descubren antiguas partículas de polvo espacial provenientes de otro sistema estelar 8 abril, 2024
    Los astrónomos han descubierto una rara partícula de polvo atrapada en un antiguo meteorito extraterrestre, que fue formado por una estrella distinta a nuestro Sol. El polvo se habría originado luego de una supernova: las partículas son como "cápsulas del tiempo celestes" y proporcionan una instantánea de la vida de su estrella madre.
    Pablo Javier Piacente