Tendencias21

Una piel artificial distingue la presión ejercida sobre ella

Ingenieros de la Universidad Stanford (EE.UU.) han diseñado una piel de plástico que puede detectar la fuerza con la que está siendo presionada y generar una señal eléctrica para enviar esta información sensorial directamente a una célula de cerebro viva. Para ello utilizan nanotubos de carbono integrados en el plástico. La piel creada, sin embargo, no puede diferenciar aún texturas y temperaturas.

Una piel artificial distingue la presión ejercida sobre ella

Ingenieros de la Universidad Stanford (California, EE.UU.) han creado una «piel» de plástico que puede detectar la fuerza con la que está siendo presionada y generar una señal eléctrica para enviar esta información sensorial directamente a una célula de cerebro viva.

Zhenan Bao, profesora de ingeniería química en Stanford, ha pasado una década tratando de desarrollar un material que imite la capacidad de la piel para flexionarse y sanar, al tiempo que sirva como red de sensores que envía señales táctiles, de temperatura y de dolor al cerebro. En última instancia quiere crear un tejido electrónico flexible con sensores integrados que pueda cubrir una prótesis y replicar algunas de las funciones sensoriales de la piel.

El trabajo de Bao, publicado en Science, da un paso más hacia su objetivo mediante la replicación de un aspecto del tacto, el mecanismo sensorial que nos permite distinguir la diferencia de presión entre un apretón de manos débil y un agarre firme.

«Esta es la primera vez que un material flexible, similar a la piel, ha sido capaz de detectar la presión y también transmitir una señal a un componente del sistema nervioso», dice Bao, que dirigió el equipo de investigación de 17 personas responsables del logro, en la información de Stanford.

Benjamin Tee, reciente doctor en ingeniería eléctrica; Alex Chortos, doctorando en ciencia de materiales e ingeniería; y Andre Berndt, postdoc en bioingeniería, son los autores principales del artículo.

Capas

El corazón de la técnica es una construcción de plástico de dos capas: la capa superior crea un mecanismo de detección y la capa inferior actúa como el circuito para transportar señales eléctricas y traducirlas en estímulos bioquímicos compatibles con las células nerviosas. La capa superior en este nuevo trabajo contó con un sensor que puede detectar la presión en el mismo rango que la piel humana, de un ligero golpe con el dedo a un firme apretón de manos.

Hace cinco años, los miembros del equipo de Bao describieron por primera vez cómo utilizar plásticos y cauchos como sensores de presión mediante la medición de la elasticidad natural de sus estructuras moleculares. A continuación incrementaron esta sensibilidad natural a la presión creando un patrón de gofre en el delgado plástico, que comprime aún más los resortes moleculares del mismo.

Para explotar esta capacidad de detectar la presión electrónicamente, el equipo dispersó miles de millones de nanotubos de carbono a lo largo del plástico gofreado. Poner presión sobre el plástico aprieta los nanotubos entre sí y les permite conducir la electricidad.

Esto permitió que el sensor de plástico imitara la piel humana, transmitiendo información de presión al cerebro en forma de pulsos cortos de electricidad, similares al código Morse. El aumento de presión sobre los nanotubos les acerca entre sí, permitiendo que más electricidad fluya a través del sensor, y los impulsos se envíen como pulsos cortos al mecanismo de detección. Si se quita la presión y el flujo de pulsos se relaja, quiere decir que el toque es ligero. Si se quita toda la presión, los pulsos cesan por completo.

Posteriormente, el equipo enganchó este mecanismo de detección de presión a la segunda capa de la piel artificial, un circuito electrónico flexible que podía llevar impulsos eléctricos a las células nerviosas.

Importación de la señal

El equipo de Bao ha estado desarrollando electrónica flexible que puede doblarse sin romperse. Para este proyecto, los miembros del equipo trabajaron con investigadores de Parc, una compañía de Xerox, que cuenta con una tecnología que utiliza una impresora de inyección de tinta para depositar circuitos flexibles en plástico. Cubrir una superficie grande es importante para hacer piel artificial práctica, y la colaboración de Parc ofreció esa posibilidad.

Por último, el equipo tuvo que probar que la señal electrónica puede ser reconocida por una neurona biológica. Lo hizo mediante la adaptación de una técnica desarrollada por Karl Deisseroth, profesor de bioingeniería en Stanford, que fue pionero en un campo que combina la genética y la óptica, llamado optogenética. Los investigadores rediseñan células para que sean sensibles a frecuencias de luz específicas, y a continuación, utilizan pulsos de luz para apagar o encender las células o los procesos que ocurren dentro de ellas.

Para este experimento los miembros del equipo diseñaron una línea de neuronas que simulan una parte del sistema nervioso humano. Tradujeron las señales de presión electrónicas de la piel artificial en impulsos de luz, que activaron las neuronas, lo que demuestra que la piel artificial podría generar una emisión sensorial compatible con las células nerviosas.

La optogenética fue utilizada solamente como prueba de concepto, dice Bao, y es posible que utilicen otros métodos de estimulación de los nervios en dispositivos protésicos reales. El equipo de Bao ya ha trabajado con Bianxiao Cui, profesora de química en Stanford, para demostrar que la estimulación directa de las neuronas con pulsos eléctricos es posible.

El equipo de Bao prevé el desarrollo de diferentes sensores para replicar, por ejemplo, la capacidad de distinguir la pana frente a la seda (textura), o un vaso de agua fría de una taza de café caliente (temperatura). Esto tomará tiempo. Hay seis tipos de mecanismos biológicos de detección en la mano del ser humano, y el experimento descrito en Science ha tenido éxito en tan sólo uno de ellos.

Pero el enfoque de dos capas actual significa que el equipo puede añadir sensaciones a medida que desarrolla nuevos mecanismos. Y el proceso de fabricación por impresión con inyección de tinta sugiere cómo una red de sensores podría depositarse sobre una capa flexible y plegada sobre una prótesis de mano.

«Tenemos mucho trabajo para llevar esto desde los experimental a las aplicaciones prácticas», dice Bao. «Pero después de pasar muchos años con este trabajo, ahora veo un camino claro para llegar a nuestra piel artificial.»

Precedentes

Otros grupos de investigación han desarrollado pieles artificiales, como los del Instituto Nacional de Ciencia y Tecnología Ulsan (UNIST), de la República de Corea, que informaron hace un año de haber creado una piel capaz de detectar no solo la presión, sino también en qué dirección viene esta.

Además, hace unos meses se dio a conocer una técnica pionera desarrollada en la Universidad de Exeter, en el Reino Unido, que permite una producción de bajo coste y alta calidad del grafeno, que favoreció el desarrollo del primer sensor táctil para crear una piel electrónica verdaderamente flexible.

Referencia bibliográfica:

B.C.K. Tee et al.: A skin-inspired organic digital mechanoreceptor. Science (2015). DOI: 10.1126/science.aaa9306.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • La misión DART podría desencadenar la primera lluvia de meteoros creada por la humanidad 13 septiembre, 2024
    Dentro de siete años podríamos experimentar la primera lluvia de meteoritos creada por el ser humano: estrellas fugaces que no existirían sin nosotros porque son los restos del asteroide Dimorphos, que fue embestido por la misión DART en 2022. Un espectáculo de gran interés científico.
    Redacción T21
  • Las experiencias extracorporales pueden derivar en profundas transformaciones psicológicas 12 septiembre, 2024
    Las experiencias fuera del cuerpo (OBE) tienen un profundo impacto en las vidas de las personas: un efecto persistente es un mayor comportamiento prosocial, que se evidencia por ejemplo en la empatía. Esto se debería a la disolución del ego, que fomenta un sentido de unidad e interconexión con los demás.
    Pablo Javier Piacente
  • Se concreta la primera caminata espacial civil de la historia 12 septiembre, 2024
    La misión Polaris Dawn de SpaceX, que partió el 10 de septiembre desde el Centro Espacial Kennedy de la NASA en Florida, Estados Unidos, está concretando en este momento la primera caminata espacial privada de la historia: el empresario Jared Isaacman y la ingeniera Sarah Gillis se mueven fuera de la cápsula espacial, a 700 […]
    Pablo Javier Piacente
  • El dinero es el gran seductor del cerebro humano 12 septiembre, 2024
    El dinero tiene el mismo efecto en el cerebro que las drogas o el sexo y está en el origen de la polarización social que ha situado el futuro de la humanidad y del planeta a los pies de la iniciativa privada. También afecta a la empatía y a la conexión emocional de las personas. […]
    Eduardo Martínez de la Fe
  • Los desiertos están amenazados por el agua 11 septiembre, 2024
    La mayor amenaza de los desiertos no es la sequía, sino las inundaciones a gran escala, según concluye un nuevo estudio. Los científicos revelaron que las áreas áridas enfrentan una alarmante vulnerabilidad debido a la creciente frecuencia de eventos climáticos extremos, relacionados con el cambio climático. Esto se debe a que las áreas desérticas cercanas […]
    Pablo Javier Piacente
  • China planea construir una base en el polo sur de la Luna para 2035 11 septiembre, 2024
    China llevará adelante un plan para diseñar un sistema escalable y sostenible en la Luna, capaz de operaciones robóticas a largo plazo, con participación humana a corto plazo, que incluirá una red de nodos interconectados. Aunque el proyecto de Estación Internacional de Investigación Lunar (ILRS) estaría concluido sobre 2050, el gigante asiático piensa poner en […]
    Pablo Javier Piacente
  • La extinción provocada de una especie inspiró a la paloma de la paz de Picasso 11 septiembre, 2024
    Hay muchos ejemplos de extinciones que hemos provocado por ambiciones económicas que hoy todavía lamentamos. Una de esas especies extinta inspiró la paloma de la paz de Picasso e impide que hoy se puedan fabricar las míticas guitarras Fender empleadas por Bruce Springsteen, The Rolling Stones o Jimi Hendrix. ¿Qué será de nosotros si consumamos […]
    Eduardo Costas | Catedrático de la UCM y Académico de Farmacia
  • La contaminación del aire aumenta la frecuencia de rayos y relámpagos 10 septiembre, 2024
    Un grupo de científicos analizó datos de más de 500.000 tormentas eléctricas en el transcurso de 12 años: descubrieron que tener partículas más finas en el aire, como aerosoles y otros contaminantes ligados a la actividad humana, está directamente relacionado con un mayor número de rayos y relámpagos. Además, incrementa en general la intensidad de […]
    Pablo Javier Piacente
  • La electricidad podría producir oro 10 septiembre, 2024
    Un nuevo estudio sugiere que la formación de pepitas de oro podría ser impulsada por un fenómeno eléctrico único: la piezoelectricidad es un proceso que resulta de la polarización eléctrica que ocurre dentro de sustancias, incluidos cristales como el cuarzo, cuando se colocan bajo tensión mecánica. Esto explicaría la formación de enormes pepitas de oro […]
    Pablo Javier Piacente
  • La IA es capaz de crear falsos recuerdos que se prolongan en el tiempo 10 septiembre, 2024
    La Inteligencia Artificial puede amplificar los falsos recuerdos, según estudio del MIT. Altera la memoria de los testigos de manera más pronunciada que los métodos tradicionales, lo que plantea preguntas fundamentales sobre la naturaleza de la memoria, la identidad y la realidad misma.
    Redacción T21