Tendencias21
El misterio del entrelazamiento cuántico se recrea cada vez mejor en laboratorio

El misterio del entrelazamiento cuántico se recrea cada vez mejor en laboratorio

El entrelazamiento cuántico es uno de los vectores tecnológicos más avanzados, aunque suena a ciencia ficción que dos dados separados por kilómetros muestren siempre la misma cara tras un encuentro fortuito. La técnica se perfecciona para replicarlo cada vez mejor en laboratorio.

Nicholas Bornman (*)

El «entrelazamiento cuántico» es uno de los varios dispositivos de la trama que aparecen en las películas de ciencia ficción modernas.

Los fanáticos de las películas de superhéroes de Marvel, por ejemplo, estarán familiarizados con la idea de que diferentes líneas de tiempo se fusionan y se cruzan, o que los destinos de los personajes se entrelazan a través de medios aparentemente mágicos.

Pero «entrelazamiento cuántico» no es solo una palabra de moda de ciencia ficción. Es un fenómeno muy real, desconcertante y útil.

El «entrelazamiento» es un aspecto de la colección más amplia de ideas en física conocida como mecánica cuántica, que es una teoría que describe el comportamiento de la naturaleza a nivel atómico, e incluso subatómico.

Comprender y aprovechar el entrelazamiento es clave para crear muchas tecnologías de vanguardia. Estas incluyen las computadoras cuánticas, que pueden resolver ciertos problemas mucho más rápido que las computadoras ordinarias, y los dispositivos de comunicación cuántica, que nos permitirían comunicarnos entre nosotros sin la más mínima posibilidad de que un fisgón nos escuche.

Pero, ¿qué es exactamente el entrelazamiento cuántico?

En mecánica cuántica, se dice que dos partículas están entrelazadas cuando una de las partículas no se puede describir perfectamente sin incluir toda la información sobre la otra: las partículas están «conectadas» de tal manera que no son independientes entre sí.

Si bien este tipo de idea puede parecer tener sentido a primera vista, es un concepto difícil de comprender, y los físicos aún están aprendiendo más al respecto.

Tema relacionado: El entrelazamiento cuántico funciona también en objetos masivos

Jugando a los dados

Supongamos que les doy a usted y a su amiga Thandi, a cada una, una pequeña caja negra opaca. Cada caja contiene un dado ordinario de seis caras. A ambas se les dice que agiten ligeramente sus cajas para mover los dados.

Entonces, ambas se separan. Thandi regresa a su casa en una ciudad sudafricana, Ciudad del Cabo; y usted regresa a otra ciudad, Durban. No se comunican entre sí durante el trayecto. Cuando llegan a sus casas, cada una de ustedes abre su caja y mira el número que muestra su dado en la cara superior.

Por lo general, no habría correlación entre los números que ven usted y Thandi. Es igualmente probable que ella observe cualquier número entre 1 y 6, al igual que usted.

Y lo que es más importante, el número que ve en su dado no tendría nada que ver con el número que ve Thandi en el suyo. Esto no es sorprendente; de ​​hecho, así es como funciona normalmente el mundo.

Sin embargo, si pudiéramos hacer este ejemplo «cuántico», los dados podrían comportarse de manera muy diferente. Supongamos que ahora les digo a Thandi y a usted que choquen sus cajas entre sí, antes de sacudirlas por separado y tomar caminos diferentes.

En una analogía de la mecánica cuántica, esta acción de chocar las dos cajas entre sí encantaría a los dados y los enlazaría, o enredaría, de una manera misteriosa: una vez que cada una llega a casa, abre su caja y mira cómo ha quedado el dado: su número y el de Thandi estarán perfectamente correlacionados. Si ve un ‘4’ en Durban, sabrá que Thandi en Ciudad del Cabo también tiene la garantía de mostrar un ‘4’ en su dado; si ve un ‘6’, ella también lo verá.

En esta analogía, los dados representan partículas individuales (como átomos o partículas de luz llamadas fotones) y el acto mágico de juntar las cajas físicamente es lo que las enreda, de modo que medir un dado nos da información sobre el otro.

Haciendo un mejor enredo

Hasta donde sabemos, no existe una acción mágica de chocar cajas para encantar un par de dados u otros objetos en nuestra escala macroscópica humana (si la hubiera, podríamos experimentar la mecánica cuántica en nuestra vida cotidiana y probablemente no sería un concepto tan extraño y desconcertante).

Por ahora, sin embargo, los científicos deben contentarse con usar cosas a nivel microscópico, donde es mucho más fácil observar efectos cuánticos, como átomos cargados llamados iones o dispositivos superconductores especiales llamados transmon .

Este es el tipo de trabajo que se lleva a cabo en el Laboratorio de Luz Estructurada de la Universidad de Witwatersrand, en Sudáfrica.

Sin embargo, en lugar de iones o transmons, los investigadores del laboratorio utilizamos partículas de luz, llamadas fotones, para comprender mejor la mecánica cuántica y sus implicaciones.

Estamos interesados ​​en utilizar la naturaleza cuántica de la luz para una variedad de propósitos: desde diseñar sistemas de comunicación eficientes que sean completamente imposibles de piratear por un tercero malévolo, hasta crear métodos para obtener imágenes de muestras biológicas sensibles sin dañarlas.

Estudios como este a menudo requieren que comencemos con estados especialmente creados de fotones entrelazados. Pero no es tan simple como poner dos dados en cajas separadas y chocarlas entre sí.

Los procesos utilizados para crear fotones entrelazados en un laboratorio real están limitados por muchas variables experimentales, como la forma de los rayos láser utilizados en experimentos y los tamaños de pequeños cristales donde se crean los fotones entrelazados.

Gestionando el entrelazamiento

Estos trabajos pueden dar resultados insatisfactorios, o estados no ideales, que requieren que los investigadores desechen selectivamente algunas mediciones una vez que se realiza un experimento. Esta no es una situación óptima: los fotones se descartan y, por lo tanto, se desperdicia energía.

Un grupo de investigadores del laboratorio, entre ellos yo mismo, recientemente dimos un paso hacia la solución de este problema.

En un artículo de una revista, calculamos matemáticamente cuál debe ser la forma óptima del láser para, de la mejor manera posible, crear el estado entrelazado con el que un experimentador querría comenzar su experimento.

El método propone cambiar la forma del rayo láser de entrada al comienzo de un experimento, para maximizar el proceso de creación de fotones entrelazados en una segunda fase del experimento.

Esto significará que habrá más fotones disponibles para realizar un experimento de la manera que desee y menos fotones extraviados.

Mejorar la eficiencia del proceso de creación y manipulación de entrelazamientos, utilizando técnicas como la propuesta, será importante para optimizar la eficiencia de una serie de otras tecnologías cuánticas, como los sistemas de criptografía cuántica y las otras tecnologías ya mencionadas.

Esto es especialmente importante a medida que avanza la cuarta revolución industrial a nivel mundial y que las tecnologías con mecánica cuántica en sus núcleos, sin duda, se vuelven más comunes.

 

(*) Nicholas Bornman es estudiante de postgrado en la Universidad de Witwatersrand en Sudáfrica. Este artículo se publicó originalmente en inglés en The Conversation. Se reproduce con autorización.

Foto superior: Geraltd. Pixabay.

Firma invitada

1 comentario

RSS Lo último de Tendencias21

  • La IA podría ser el límite para todas las civilizaciones avanzadas en el Universo 10 abril, 2024
    Un nuevo estudio sugiere que el desarrollo de la Inteligencia Artificial (IA) hacia una Superinteligencia Artificial (ASI) podría explicar por qué no hemos detectado aún otras civilizaciones avanzadas en el cosmos, a pesar de la alta probabilidad de su existencia: en vez de supernovas, plagas, guerras nucleares o eventos climáticos extremos que hayan sido un […]
    Pablo Javier Piacente
  • Higgs ha podido dejar abierta la puerta a la Nueva Física 10 abril, 2024
    La muerte de Peter Higgs, que pasará a la historia como el descubridor del bosón que explica cómo se forma la materia, deja un legado en la historia de la física que todavía puede aportar algo más trascendente: la prueba definitiva de una Nueva Física más allá del Modelo Estándar.
    Eduardo Martínez de la Fe
  • Descubren neuronas "zombis" en el cerebro, que serían claves en el proceso de aprendizaje 9 abril, 2024
    Las neuronas "zombis" son unidades vivas pero funcionalmente alteradas, que parecen "dormidas" en determinadas situaciones: los investigadores han revelado que cumplen un papel fundamental en el cerebelo, concretamente en aspectos relativos a la forma en la cual aprendemos.
    Pablo Javier Piacente
  • La Luna se invirtió por completo hace más de 4 mil millones de años 9 abril, 2024
    Hace unos 4.220 millones de años, poco después de que la Luna se formara a partir de un trozo de la Tierra que se desprendió durante una colisión violenta a principios de la historia del Sistema Solar, nuestro satélite se dio vuelta y comenzó así una etapa clave de su desarrollo. Así lo ha comprobado […]
    Pablo Javier Piacente
  • Arte rupestre de hace 2.000 años podría representar música psicodélica 9 abril, 2024
    Aunque la música psicodélica moderna no nació hasta la década de 1960, las influencias psicodélicas se pueden encontrar en el arte rupestre de hace miles de años. Grabados precolombinos en piedra, de 2.000 años de antigüedad, reflejan figuras humanas bailando en estado de trance chamánico.
    Redacción T21
  • Descubren antiguas partículas de polvo espacial provenientes de otro sistema estelar 8 abril, 2024
    Los astrónomos han descubierto una rara partícula de polvo atrapada en un antiguo meteorito extraterrestre, que fue formado por una estrella distinta a nuestro Sol. El polvo se habría originado luego de una supernova: las partículas son como "cápsulas del tiempo celestes" y proporcionan una instantánea de la vida de su estrella madre.
    Pablo Javier Piacente
  • Un lejano mundo deja ver una increíble explosión de luz en sus cielos "metálicos" 8 abril, 2024
    Utilizando datos del Telescopio Espacial CHEOPS de la Agencia Espacial Europea (ESA), cuyo centro de operaciones científicas se localiza en la Universidad de Ginebra, en Suiza, un equipo internacional de científicos logró detectar por primera vez un extraño fenómeno lumínico denominado “gloria” en un exoplaneta: el estallido de luz se apreció en WASP-76b, un mundo […]
    Pablo Javier Piacente
  • El ordenador cuántico desembarca en el mundo universitario 8 abril, 2024
    La última computadora cuántica System One de IBM se ha instalado en el Instituto Politécnico Rensselaer (RPI) en Nueva York. Es la primera máquina cuántica de IBM instalada en un campus universitario de Estados Unidos. Una revolución en el mundo académico que impulsa la formación de un ecosistema cuántico global.
    Eduardo Martínez de la Fe
  • Los cocodrilos imitan a las ballenas antes de aparearse 7 abril, 2024
    Los cocodrilos cortejan a las hembras lanzando un chorro de agua al aire, tal como hacen las ballenas cuando salen a la superficie. A ellas les encantan también los silbidos y las burbujas que les dedican sus parejas antes de aparearse. Se está elaborando un diccionario de cocodrilos.
    Redacción T21
  • Los drones policiales se implantan en Estados Unidos 6 abril, 2024
    Chula Vista, un suburbio de San Diego, California, con una población de 275.000 habitantes, es una de las pocas ciudades estadounidenses que utiliza sistemáticamente drones para ayudar a la policía en caso de emergencia. En activo desde 2018, el sistema está sirviendo de referencia a otros Estados y tal vez otros países.
    Redacción T21