Tendencias21

Consiguen manejar el calor y el sonido con imanes

Investigadores de la Universidad Estatal de Ohio (OSU, EE.UU.) han descubierto la forma de controlar el calor y el sonido con un campo magnético. El logro constata por vez primera que los fonones acústicos -partículas elementales que transmiten calor y sonido a la vez- tienen propiedades magnéticas.

Consiguen manejar el calor y el sonido con imanes

Investigadores de la Universidad Estatal de Ohio (OSU, EE.UU.) han descubierto la forma de controlar el calor con un campo magnético.

En la edición de este pasado martes de la revista Nature Materials describen cómo un campo magnético más o menos del tamaño de una resonancia magnética médica reduce la cantidad de calor que fluye a través de un semiconductor en un 12 por ciento.

El estudio es el primero en demostrar que los fonones acústicos -las partículas elementales que transmiten calor y sonido a la vez- tienen propiedades magnéticas.

«Esto añade una nueva dimensión a nuestra comprensión de las ondas acústicas», dice Joseph Heremans, experto en Nanotecnología y profesor de ingeniería mecánica en la OSU, en la web de ésta. «Hemos demostrado que podemos dirigir el calor magnéticamente. Con un campo magnético lo suficientemente fuerte, deberíamos ser capaces de dirigir las ondas de sonido, también.»

Puede resultar sorprendente que el calor y el sonido tengan algo que ver entre sí, y mucho más que puedan ser controlados por imanes, reconoce Heremans. Pero ambos son expresiones de la misma forma de energía, hablando en términos de mecánica cuántica. Así que cualquier fuerza que controle uno debe controlar a la otra.

«En esencia, el calor es la vibración de los átomos», explica. «El calor es conducido a través de materiales mediante vibraciones. Cuanto más caliente esté un material, más rápido vibrarán los átomos».

«El sonido es la vibración de los átomos, también», continúa. «Hablo a través de vibraciones, porque mis cuerdas vocales comprimen el aire y crean vibraciones que viajan hacia usted, y usted las recoge en sus oídos como sonido.»

El nombre «fonones» suena muy parecido a «fotones»: es porque los investigadores consideran que son primos. Los fotones son partículas de luz, y los fonones son partículas de calor y sonido. Pero los investigadores han estudiado los fotones intensamente durante cien años, desde que Einstein descubrió el efecto fotoeléctrico. Los fonones no han recibido tanta atención, por lo que no se sabe mucho acerca de ellos más allá de sus propiedades de calor y sonido.

«Creemos que estas propiedades generales están presentes en cualquier sólido», dice Hyungyu Jin, investigador postdoc de la OSU y autor principal del estudio.

Consecuencias

La implicación: En materiales como vidrio, piedra, plástico -materiales que no son convencionalmente magnéticos- el calor puede ser controlado magnéticamente, si se tiene un imán suficientemente poderoso. El efecto pasaría desapercibido en los metales, que transmiten tanto calor a través de los electrones que cualquier calor transportado por fonones es insignificante en comparación.

No habrá ninguna aplicación práctica de este descubrimiento a corto plazo: los imanes de 7 teslas como el utilizado en el estudio no existen fuera de los hospitales y laboratorios, y el semiconductor tuvo que enfriarse a -268 grados Celsius, muy cerca del cero absoluto, para hacer que los átomos del material se ralentizaran los suficiente para que los movimientos de los fonones fueran detectables.

Es por eso que el experimento fue tan difícil, dice Jin. Tomar una medida térmica a una temperatura tan baja era difícil. Su solución fue tomar una pieza del semiconductor antimoniuro de indio y darle la forma de horquilla vibratoria asimétrica. Un brazo de la horquilla tenía 4 mm de ancho y el otro 1 mm. Jin colocó calentadores en la base de los brazos.

El diseño funcionó debido a una peculiaridad del comportamiento del semiconductor a bajas temperaturas. Normalmente, la capacidad de un material para transferir calor dependería únicamente del tipo de átomos de los que está hecho. Pero a temperaturas muy bajas, como las utilizadas en este experimento, otro factor entra en juego: el tamaño de la muestra que se está probando.

En esas condiciones, una muestra más grande puede transferir calor más rápido que una muestra más pequeña del mismo material. Esto significa que el brazo mayor de la horquilla vibratoria podía transferir más calor que el brazo más pequeño.

Heremans explica por qué: «Imagine que la horquilla vibratoria es una pista y que los fonones que fluyen desde la base son corredores. Los corredores que toman el lado estrecho de la horquilla apenas tienen espacio suficiente para pasar a través de él, y siguen chocando con las paredes de la pista, lo que les frena. Los corredores que toman la pista más ancha pueden correr más rápido, debido a que tienen un montón de espacio.

«Todos ellos acaban pasando por el material, la pregunta es cómo de rápido», continúa. «Cuantas más colisiones sufren, más lento van.»

En el experimento, Jin midió el cambio de temperatura en ambos brazos de la horquilla y restó uno del otro, ambos con y sin un campo magnético de 7 teslas activado.

En ausencia del campo magnético, el brazo más grande de la horquilla transfiere más calor que el brazo más pequeño, como los investigadores esperaban. Pero en presencia del campo magnético, el flujo de calor a través del brazo mayor se frenaba un 12 por ciento.

Explicación

Entonces, ¿qué había cambiado? Heremans dice que el campo magnético causaba que algunos de los fonones que pasaban a través del material vibraran no sincronizados para que chocaran uno con el otro, un efecto identificado y cuantificado a través de simulaciones por ordenador realizadas por investigadores del Departamento de Ciencia e Ingeniería de los Materiales de OSU.

En el brazo más grande, la libertad de movimiento actuó contra los fonones, que experimentaron más colisiones. Un 12 por ciento menos pasó a través del material indemne.

Los fonones reaccionaron al campo magnético, por lo que estas partículas deben de ser sensibles al magnetismo, concluyeron los investigadores. A continuación, se plantean probar si se pueden desviar ondas sonoras hacia los lados con campos magnéticos.

Referencia bibliográfica:

Hyungyu Jin, Oscar D. Restrepo, Nikolas Antolin, Stephen R. Boona, Wolfgang Windl, Roberto C. Myers, Joseph P. Heremans: Phonon-induced diamagnetic force and its effect on the lattice thermal conductivity. Nature Materials (2015). DOI: 10.1038/nmat4247

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Ya es posible transmitir el tacto a través de Internet 26 junio, 2024
    Un nuevo estándar para la compresión y transmisión del sentido del tacto mediante Internet sienta las bases para la telecirugía, la teleconducción y nuevas experiencias de juego en línea, entre otras aplicaciones. El flamante estándar HCTI (Haptic Codecs for the Tactile Internet) es para el “tacto digital” lo que son JPEG, MP3 y MPEG para […]
    Pablo Javier Piacente
  • Las primeras muestras de la cara oculta de la Luna ya están en la Tierra 26 junio, 2024
    La cápsula de reingreso de la sonda Chang'e-6 de China, que transporta hasta dos kilogramos de materiales extraídos y perforados de la cuenca más antigua de la Luna ubicada en su lado oscuro, aterrizó este martes 25 de junio en la región de Mongolia Interior y fue rápidamente recuperada, según informó la Administración Nacional del […]
    Pablo Javier Piacente
  • La Tierra tendrá dos soles dentro de 1,3 millones de años y durante 60.000 años 26 junio, 2024
    Dentro de 1,3 millones de años, la Tierra tendrá una especie de segundo sol porque la estrella Gliese 710 se acercará a 1,1 años luz de la Tierra y la veríamos del mismo tamaño que Júpiter. Lo malo es que esa alteración cósmica puede provocar un episodio en nuestro planeta como el que acabó con […]
    Eduardo Martínez de la Fe
  • China descubre grafeno natural en la Luna 25 junio, 2024
    Investigadores chinos han descubierto recientemente grafeno natural de escasas capas por primera vez en la Luna, a partir de las muestras traídas a la Tierra por la sonda Chang'e 5. El hallazgo proporciona nuevos conocimientos sobre las actividades geológicas, la historia evolutiva y las características ambientales de la Luna.
    Pablo Javier Piacente
  • Los incendios forestales extremos se duplicaron en los últimos 20 años en todo el planeta 25 junio, 2024
    Una nueva investigación concluye que la frecuencia e intensidad de los incendios forestales extremos se ha más que duplicado en todo el mundo en las últimas dos décadas, debido al calentamiento global antropogénico y otros factores relacionados. Se trata de la primera ocasión en la cual los científicos pudieron trazar una tendencia global para los […]
    Pablo Javier Piacente
  • Detectado en el Mediterráneo el neutrino más energético del universo 25 junio, 2024
    El neutrino más potente jamás observado ha dejado su huella en las profundidades del Mediterráneo, aunque todavía se desconoce de qué rincón del universo procede. Los neutrinos cosmogénicos son los mensajeros de algunos de los eventos más cataclísmicos del cosmos.
    Eduardo Martínez de la Fe
  • La IA identifica seis formas diferentes de depresión 24 junio, 2024
    Los científicos han identificado seis formas biológicamente distintas de depresión gracias a la aplicación de la Inteligencia Artificial (IA) en estudios cerebrales. El hallazgo podría explicar por qué algunas personas no responden a los tratamientos tradicionales para la afección, como los antidepresivos y la terapia psicológica.
    Pablo Javier Piacente
  • La NASA pondrá en órbita una estrella artificial que revolucionará el estudio del Universo 24 junio, 2024
    La NASA encarará un ambicioso proyecto para colocar en órbita una estrella artificial: permitirá la calibración de telescopios a niveles previamente inalcanzables. El proyecto tiene como objetivo mejorar significativamente las mediciones de la luminosidad estelar y abordar varios otros desafíos que dificultan la astrofísica moderna.
    Pablo Javier Piacente
  • Los macacos nos enseñan cómo sobrevivir a un desastre natural 24 junio, 2024
    Los macacos de la isla caribeña de Puerto Rico se volvieron más tolerantes y menos agresivos después del huracán María, que los obligó a compartir la sombra de los árboles para sobrevivir al intenso calor.
    Redacción T21
  • Extrañas formas de vida se ocultan en antiguas cuevas de lava de Hawai 23 junio, 2024
    Científicos estadounidenses han logrado identificar una gran diversidad de especies microbianas únicas, que se han desarrollado en cuevas geotérmicas, tubos de lava y fumarolas volcánicas de la isla de Hawái. Estas estructuras subterráneas se formaron hace entre 65 y 800 años y reciben poca o ninguna luz solar, en ambientes similares a los que pueden encontrarse […]
    Pablo Javier Piacente