Tendencias21

Consiguen manejar el calor y el sonido con imanes

Investigadores de la Universidad Estatal de Ohio (OSU, EE.UU.) han descubierto la forma de controlar el calor y el sonido con un campo magnético. El logro constata por vez primera que los fonones acústicos -partículas elementales que transmiten calor y sonido a la vez- tienen propiedades magnéticas.

Consiguen manejar el calor y el sonido con imanes

Investigadores de la Universidad Estatal de Ohio (OSU, EE.UU.) han descubierto la forma de controlar el calor con un campo magnético.

En la edición de este pasado martes de la revista Nature Materials describen cómo un campo magnético más o menos del tamaño de una resonancia magnética médica reduce la cantidad de calor que fluye a través de un semiconductor en un 12 por ciento.

El estudio es el primero en demostrar que los fonones acústicos -las partículas elementales que transmiten calor y sonido a la vez- tienen propiedades magnéticas.

«Esto añade una nueva dimensión a nuestra comprensión de las ondas acústicas», dice Joseph Heremans, experto en Nanotecnología y profesor de ingeniería mecánica en la OSU, en la web de ésta. «Hemos demostrado que podemos dirigir el calor magnéticamente. Con un campo magnético lo suficientemente fuerte, deberíamos ser capaces de dirigir las ondas de sonido, también.»

Puede resultar sorprendente que el calor y el sonido tengan algo que ver entre sí, y mucho más que puedan ser controlados por imanes, reconoce Heremans. Pero ambos son expresiones de la misma forma de energía, hablando en términos de mecánica cuántica. Así que cualquier fuerza que controle uno debe controlar a la otra.

«En esencia, el calor es la vibración de los átomos», explica. «El calor es conducido a través de materiales mediante vibraciones. Cuanto más caliente esté un material, más rápido vibrarán los átomos».

«El sonido es la vibración de los átomos, también», continúa. «Hablo a través de vibraciones, porque mis cuerdas vocales comprimen el aire y crean vibraciones que viajan hacia usted, y usted las recoge en sus oídos como sonido.»

El nombre «fonones» suena muy parecido a «fotones»: es porque los investigadores consideran que son primos. Los fotones son partículas de luz, y los fonones son partículas de calor y sonido. Pero los investigadores han estudiado los fotones intensamente durante cien años, desde que Einstein descubrió el efecto fotoeléctrico. Los fonones no han recibido tanta atención, por lo que no se sabe mucho acerca de ellos más allá de sus propiedades de calor y sonido.

«Creemos que estas propiedades generales están presentes en cualquier sólido», dice Hyungyu Jin, investigador postdoc de la OSU y autor principal del estudio.

Consecuencias

La implicación: En materiales como vidrio, piedra, plástico -materiales que no son convencionalmente magnéticos- el calor puede ser controlado magnéticamente, si se tiene un imán suficientemente poderoso. El efecto pasaría desapercibido en los metales, que transmiten tanto calor a través de los electrones que cualquier calor transportado por fonones es insignificante en comparación.

No habrá ninguna aplicación práctica de este descubrimiento a corto plazo: los imanes de 7 teslas como el utilizado en el estudio no existen fuera de los hospitales y laboratorios, y el semiconductor tuvo que enfriarse a -268 grados Celsius, muy cerca del cero absoluto, para hacer que los átomos del material se ralentizaran los suficiente para que los movimientos de los fonones fueran detectables.

Es por eso que el experimento fue tan difícil, dice Jin. Tomar una medida térmica a una temperatura tan baja era difícil. Su solución fue tomar una pieza del semiconductor antimoniuro de indio y darle la forma de horquilla vibratoria asimétrica. Un brazo de la horquilla tenía 4 mm de ancho y el otro 1 mm. Jin colocó calentadores en la base de los brazos.

El diseño funcionó debido a una peculiaridad del comportamiento del semiconductor a bajas temperaturas. Normalmente, la capacidad de un material para transferir calor dependería únicamente del tipo de átomos de los que está hecho. Pero a temperaturas muy bajas, como las utilizadas en este experimento, otro factor entra en juego: el tamaño de la muestra que se está probando.

En esas condiciones, una muestra más grande puede transferir calor más rápido que una muestra más pequeña del mismo material. Esto significa que el brazo mayor de la horquilla vibratoria podía transferir más calor que el brazo más pequeño.

Heremans explica por qué: «Imagine que la horquilla vibratoria es una pista y que los fonones que fluyen desde la base son corredores. Los corredores que toman el lado estrecho de la horquilla apenas tienen espacio suficiente para pasar a través de él, y siguen chocando con las paredes de la pista, lo que les frena. Los corredores que toman la pista más ancha pueden correr más rápido, debido a que tienen un montón de espacio.

«Todos ellos acaban pasando por el material, la pregunta es cómo de rápido», continúa. «Cuantas más colisiones sufren, más lento van.»

En el experimento, Jin midió el cambio de temperatura en ambos brazos de la horquilla y restó uno del otro, ambos con y sin un campo magnético de 7 teslas activado.

En ausencia del campo magnético, el brazo más grande de la horquilla transfiere más calor que el brazo más pequeño, como los investigadores esperaban. Pero en presencia del campo magnético, el flujo de calor a través del brazo mayor se frenaba un 12 por ciento.

Explicación

Entonces, ¿qué había cambiado? Heremans dice que el campo magnético causaba que algunos de los fonones que pasaban a través del material vibraran no sincronizados para que chocaran uno con el otro, un efecto identificado y cuantificado a través de simulaciones por ordenador realizadas por investigadores del Departamento de Ciencia e Ingeniería de los Materiales de OSU.

En el brazo más grande, la libertad de movimiento actuó contra los fonones, que experimentaron más colisiones. Un 12 por ciento menos pasó a través del material indemne.

Los fonones reaccionaron al campo magnético, por lo que estas partículas deben de ser sensibles al magnetismo, concluyeron los investigadores. A continuación, se plantean probar si se pueden desviar ondas sonoras hacia los lados con campos magnéticos.

Referencia bibliográfica:

Hyungyu Jin, Oscar D. Restrepo, Nikolas Antolin, Stephen R. Boona, Wolfgang Windl, Roberto C. Myers, Joseph P. Heremans: Phonon-induced diamagnetic force and its effect on the lattice thermal conductivity. Nature Materials (2015). DOI: 10.1038/nmat4247

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Primeros pasos para una red cuántica global en la nube 10 marzo, 2022
    La Estación Espacial Internacional inicia este año un experimento para posibilitar la comunicación cuántica global a través de nodos espaciales que conectan transmisores y receptores cuánticos en tierra, separados entre sí por grandes distancias.
    JPL/T21
  • El cerebro poda los recuerdos antes de archivarlos en la memoria 10 marzo, 2022
    El cerebro codifica los recuerdos en función de la naturaleza de una experiencia y privilegia los asociados a fuertes emociones porque interpreta que están relacionados con nuestra supervivencia. Los poda como si fueran ramas de árboles antes de archivarlos.
    Eduardo Martínez de la Fe
  • Una antigua ciudad mexicana se desarrolló más de mil años sin extremos en riqueza y poder 9 marzo, 2022
    Una vida solidaria y cooperativa, sin la necesidad de castas dominantes que concentraran riqueza y poder, fue el motivo por el cual la antigua ciudad de Monte Albán, en México, se desarrolló y perduró durante trece siglos, según un nuevo estudio. La localidad no contaba con tierras demasiado fértiles ni con una ubicación privilegiada en […]
    Pablo Javier Piacente
  • El agujero negro supermasivo de la Vía Láctea juega con burbujas 9 marzo, 2022
    En 2020, dos enormes burbujas que se extendían por el centro de la Vía Láctea fueron observadas por el telescopio de rayos X eRosita, sin que los científicos pudieran precisar su origen. Ahora, un nuevo estudio ha comprobado que las gigantescas burbujas son el resultado de un poderoso chorro de actividad procedente del agujero negro […]
    Pablo Javier Piacente
  • Los agujeros negros dispondrían también de un túnel del tiempo 9 marzo, 2022
    Los agujeros negros dispondrían de un túnel del tiempo parecido al de los agujeros de gusano, a través del cual la radiación predicha por Hawking puede escapar de su potente campo gravitatorio. Un nuevo intento de conciliar física cuántica y gravedad.
    Eduardo Martínez de la Fe
  • Los misiles hipersónicos pueden decidir el desenlace de la guerra de Ucrania 9 marzo, 2022
    La tecnología de los misiles hipersónicos, todavía no contrastada, puede encontrar en Ucrania el escenario en el que Rusia la pruebe antes de convertirla en un arma nuclear capaz de alcanzar Europa, en menos de 10 minutos, con bombas más potentes que las de Hiroshima.
    Eduardo Martínez de la Fe
  • La vida ha modificado incluso las entrañas de la Tierra 8 marzo, 2022
    El rápido desarrollo de la fauna hace 540 millones de años ha cambiado permanentemente a la Tierra, incluso en lo más profundo de su manto inferior. Eso significa que el desarrollo de la vida ha modificado a nuestro planeta hasta sus entrañas, debido a que la Tierra es un sistema general complejo.
    Pablo Javier Piacente
  • El CERN de Ginebra rompe también con la ciencia de Rusia 8 marzo, 2022
    La poderosa Organización Europea para la Investigación Nuclear ha suspendido la colaboración con las instituciones científicas de la Federación Rusa, al mismo tiempo que le ha retirado su estatus de observador en el CERN, como consecuencia de la invasión de Ucrania.
    Redacción T21
  • Los agujeros negros tienen un corazón palpitante 8 marzo, 2022
    Los agujeros negros “laten” como un corazón: un movimiento en secuencias permite que el material que los alimenta se acumule y caliente en una corona, para luego expulsar parte de ese material en forma de chorros. La dinámica es similar a la que puede observarse en la circulación de la sangre por el corazón humano, […]
    Pablo Javier Piacente
  • Una nueva técnica genética consigue crear mamíferos sin padres 8 marzo, 2022
    Por primera vez en la historia, una hembra de ratón sin padre, nacida de un óvulo no fertilizado, no solo ha sobrevivido hasta la edad adulta, sino que ha alumbrado una camada de crías sanas producto de la reproducción sexual.
    Eduardo Martínez de la Fe