Tendencias21

Descubren cómo funciona el olfato de las levaduras

Las células tienen un sentido del olfato infalible que les dice en qué dirección crecer para acercarse a la fuente de un olor. Investigadores de la Escuela Politécnica Federal de Zúrich (Suiza) han descubierto cómo funciona este sentido del olfato en las levaduras, que tienen una multiherramienta (sensor, procesador y motor a la vez) que reconoce las señales químicas y crece hacia ellas. En concreto, observaron cómo detectan las levaduras a sus parejas sexuales.

Descubren cómo funciona el olfato de las levaduras

Un problema frecuente al que se enfrentan las células es que están rodeadas por una prometedora nube de olor y deben determinar la dirección de su fuente. Las células nerviosas, por ejemplo, forman largas extensiones que son atraídas por las señales de otras células con el fin de producir la red que forma el sistema nervioso; del mismo modo, las células buitre reconocen el olor de gérmenes dañinos con el fin de perseguirlos y destruirlos.

Pero ¿cómo detectan las células estas señales de olor, que se vuelven más y más débiles a medida que aumenta la distancia con la fuente? ¿Cómo leen las células este debilitamiento de la señal -técnicamente conocido como gradiente de señal- con el fin de orientar su crecimiento o movimiento hacia la fuente de la señal? Cómo se detectan las señales espaciales es una pregunta fundamental a la que se enfrenta la biología, y hasta ahora este enigma se ha mantenido en gran medida sin resolver.

Ahora, investigadores dirigidos por el profesor Matthias Peter, del Instituto de Bioquímica de la Escuela Politécnica Federal (ETH) de Zúrich (Suiza), han presentado una posible solución. Las células de levadura tienen una multiherramienta muy sutil y ajustable que reconoce las señales químicas, las procesa en consecuencia, e inicia la respuesta correcta: crecer hacia la fuente de la señal. Por lo tanto, las células de levadura son capaces de oler la ubicación de posibles parejas sexuales en su entorno, para crecer hacia ells.

Los biólogos realizaron su estudio utilizando una combinación de observaciones microscópicas y un modelo informático que desarrollado a través de una colaboración interdisciplinar con investigadores del Laboratorio de Control Automático de Heinz Koeppl (ahora en la Universidad Técnica de Darmstadt, Alemania).

Multiherramienta

Si la célula sospecha que hay un gradiente de señal cerca, coloca la multiherramienta en una posición aleatoria en la membrana. Esta herramienta es un gran complejo de proteínas formado por más de 100 componentes diferentes; el complejo es tan grande que se puede ver a través de un microscopio de fluorescencia. Los investigadores llaman a esto un sitio de polaridad (SP) porque se produce un crecimiento polarizado en el lugar donde se forma el complejo.

Usando microscopía de fluorescencia, los investigadores han observado cómo localiza el SP la fuente de señal de un gradiente. En primer lugar, el SP se mueve a lo largo de la membrana hacia la señal más fuerte. Una vez que ha identificado la mayor cantidad de sustancia de la señal en el gradiente, deja de moverse. El SP a continuación crea en esta ubicación de la célula una protuberancia, que sigue creciendo hacia la fuente de la señal. Naturalmente, la señal la produce una pareja sexual y las dos células se fusionan una vez que se encuentran la una a la otra.

Modelo computacional

Con el fin de entender los mecanismos moleculares de este proceso, los investigadores recurrieron a un modelo de ordenador. «Este modelo nos ayudó a reducir la complejidad del SP y el proceso a unos pocos componentes esenciales», dice Björn Hegemann, autor principal de un estudio publicado en la revista Development Cell, en la información de ETH.

Estos componentes esenciales de la maquinaria incluyen un receptor que recoge y envía la señal, o la proteína Cdc42, que transporta el receptor a lo largo de la membrana, y la proteína Cdc24, que regula la actividad de Cdc42. «Se podría describir el receptor como la nariz, Cdc42 como la rueda de la maquinaria y Cdc24 como su freno», dice Hegemann.

Mientras el SP se está moviendo a través de la membrana celular en busca de una señal química más fuerte, sólo están presentes en la maquinaria unas pocas moléculas de la proteína de ruptura Cdc24. Una vez que se ha encontrado la concentración máxima de la señal, el SP solicita moléculas Cdc24 adicionales, que se almacenan en el núcleo, para unirse al complejo. Cuantas más moléculas de Cdc24 se conectan a la máquina SP, más lenta se vuelve. Sin embargo, sólo cuando la cantidad de Cdc24 supera un cierto umbral, se detiene completamente el SP y empieza a formarse el bulto en la célula.

«En primer lugar, observamos el movimiento del sitio de polaridad mediante el microscopio de fluorescencia. Luego simulamos este movimiento en el equipo, lo que nos permitió desarrollar una hipótesis de cómo se podría controlar el movimiento. Entonces pudimos confirmar esta hipótesis de forma experimental a través de mutaciones y utilizando el microscopio de fluorescencia», dice Hegemann, que está satisfecho con los nuevos hallazgos.

Según él, el modelo computacional, relativamente sencillo, fue una excelente base para la planificación de los experimentos, permitiendo a los investigadores cambiar los componentes rápidamente y con ello identificar aspectos importantes. Esto hizo el estudio más simple, dice, ya que no era necesario probar todo experimentalmente.

Hegemann asume que no sólo las células de levadura utilizan una multiherramienta semejante al sitio polaridad. Un comportamiento similar al de un SP también se ha observado en la levadura de fisión (S. pombe) y en el gusano C. elegans, aunque sin explicación molecular.

Este trabajo establece una importante piedra fundacional para más estudios sobre la percepción espacial de señales por las células -tanto en la levadura como en los seres humanos. Según Hegemann, actualmente no hay aplicaciones médicas directas previstas.

Referencia bibliográfica:

Björn Hegemann, Michael Unger, Sung Sik Lee, Ingrid Stoffel-Studer, Jasmin van den Heuvel, Serge Pelet, Heinz Koeppl, Matthias Peter: A Cellular System for Spatial Signal Decoding in Chemical Gradients. Developmental Cell (2015). DOI: 10.1016/j.devcel.2015.10.013.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren una firme y alarmante relación entre las bebidas azucaradas y el cáncer 25 marzo, 2025
    Un nuevo estudio ha hallado un vínculo alarmante entre las bebidas azucaradas y el cáncer oral: los científicos de la Universidad de Washington descubrieron que las mujeres que beben al menos un refresco azucarado por día parecen tener aproximadamente cinco veces más probabilidades de contraer cáncer de cavidad oral (OCC) que las mujeres que evitan […]
    Pablo Javier Piacente / T21
  • Elon Musk y Neuralink ya están patentando una aplicación de "telepatía" 25 marzo, 2025
    En los últimos meses, Elon Musk y su equipo en Neuralink se han referido a las capacidades del chip de interfaz cerebral de la compañía, The Link, como “Telepatía”. Neuralink incluso ha presentado una solicitud de marca comercial ante los organismos oficiales estadounidenses para reservar los nombres “Telepatía” y “Telekinesis”. ¿Ya tiene Neuralink el secreto […]
    Pablo Javier Piacente / T21
  • Desarrollan la pantalla LED más pequeña del mundo: tiene el tamaño de un virus 25 marzo, 2025
    Investigadores de la Universidad de Zhejiang en Hangzhou, China, en colaboración con la Universidad de Cambridge, han creado una pantalla LED con píxeles que miden solo 90 nanómetros de ancho, un tamaño comparable al de los virus típicos. 
    Redacción T21
  • La revolución de la inteligencia artificial: ¿la era del fin del trabajo humano? 25 marzo, 2025
    La IA ha cruzado un umbral crítico: pronto podríamos ver sistemas autónomos capaces de realizar tareas humanas complejas, de semanas de duración, realizadas en apenas horas, cambiando para siempre el mercado laboral y la sociedad.
    Redacción T21
  • ¿Por qué no recordamos nada de cuando éramos bebés? 25 marzo, 2025
    El enigma de la memoria infantil parece comenzar a resolverse: una nueva investigación muestra que los bebés pueden codificar recuerdos específicos, sugiriendo que la “amnesia infantil” que nos impide recordar la etapa más temprana de la vida podría ser un problema de recuperación de memoria.
    Redacción T21
  • Todos los robots en todas partes: la era de la robótica generalista ha llegado 25 marzo, 2025
    Nos dirigimos a pasos acelerados a un mundo en el que conviviremos y seremos asistidos por robots humanoides E-AGI, que se ocuparán de muchas de las tareas de trabajadores humanos. Será un reto para nuestro actual sistema legislativo, policial y jurídico.
    Alejandro Sacristán
  • Los humanos modernos provienen de una combinación de linajes genéticos 24 marzo, 2025
    Una nueva investigación muestra que nuestros orígenes evolutivos son más complejos de lo pensado y no provienen de un único linaje, involucrando diferentes grupos que se desarrollaron por separado durante más de un millón de años, y luego se combinaron para formar la especie humana moderna.
    Pablo Javier Piacente / T21
  • Describen cómo el uso de ChatGPT afecta el bienestar emocional de las personas 24 marzo, 2025
    Dos nuevos estudios de OpenAI nos permiten tener una mejor idea de cómo los chatbots nos están afectando, aunque todavía hay mucho que no sabemos: los investigadores confirmaron que solo un pequeño subconjunto de usuarios interactúa emocionalmente con ChatGPT. También hallaron diferencias en el impacto que genera en cada persona, identificando dependencia emocional y cierta […]
    Pablo Javier Piacente / T21
  • La Universidad de Columbia acata la injerencia de Trump para no perder fondos federales 24 marzo, 2025
    La Universidad de Columbia ha aceptado injerencias políticas en el diseño de contenidos académicos y cercenar la libertad de manifestación en el campus, todo ello para no perder fondos federales. Medio centenar de universidades de Estados Unidos están también amenazadas de intervención.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Un truco mental reduce realmente el dolor 24 marzo, 2025
    Un estudio ha demostrado que la conocida “ilusión de la mano de goma” puede reducir significativamente la percepción del dolor. Los investigadores sugieren que la ilusión sobre una extremidad artificial puede alterar la percepción del dolor en tiempo real, proporcionando implicaciones potenciales para nuevas terapias.
    Redacción T21