Tendencias21
El campo magnético de Mercurio ha cambiado

El campo magnético de Mercurio ha cambiado

El campo magnético de Mercurio ha cambiado a lo largo del tiempo, si bien su evolución magnética ha sido muy distinta de la de la Tierra. Podría incluso haberse desplazado a lo largo de su eje, ha descubierto la ESA.

El campo magnético de Mercurio ha cambiado

La Agencia Espacial Europea (ESA) ha descubierto que la ubicación del campo magnético de Mercurio ha cambiado a lo largo del tiempo de manera sorprendente.

El nuevo estudio también sugiere que el legado magnético de Mercurio puede ser más complicado de lo que se pensaba. Al igual que sucede con la Tierra, Mercurio tiene un núcleo de metal líquido cuyo movimiento genera un campo magnético.

En nuestro planeta, los polos norte y sur magnéticos se desplazan entre 10 y 60 kilómetros al año, por lo que la orientación del campo magnético se ha invertido más de cien veces en sus 4.500 millones de años de historia.

La investigadora de la ESA Joana S. Oliveira empleó datos de la misión MESSENGER de la NASA, que orbitó Mercurio entre 2011 y 2015, para comprender mejor la historia magnética del planeta más cercano al Sol.

El lenguaje de las rocas

Los científicos utilizan las rocas para estudiar la evolución de los campos magnéticos planetarios. Resultan especialmente útiles las rocas volcánicas creadas por el enfriamiento de lava, así como las rocas que se funden durante grandes colisiones.

A medida que las rocas se enfrían, el material magnético contenido en ellas se alinea con el campo magnético del planeta en ese momento, preservando su dirección y posición como si fuera una instantánea.

Joana y sus colaboradores emplearon observaciones de cinco cráteres con irregularidades magnéticas. Se sospechaba que estos cráteres se habían formado en un momento en que la orientación del campo magnético del núcleo era distinta de la actual.

Los investigadores modelaron el antiguo campo magnético de Mercurio basándose en los datos de los cráteres para calcular las posibles ubicaciones de los polos en el pasado. Así descubrieron que los polos se encontraban lejos de la posición actual y que podrían haber cambiado a lo largo del tiempo.

Esperaban que los polos se acumulasen en dos puntos cercanos al eje rotacional de Mercurio, en los polos norte y sur del planeta. Sin embargo, los polos se hallaban distribuidos aleatoriamente y siempre se encontraban en el hemisferio meridional.

Polo trasladado

Los polos antiguos no se alinean con el actual polo norte magnético de Mercurio, ni con su sur geográfico, lo que indica que el campo magnético dipolar del planeta se ha trasladado.

Los resultados también sugieren que el planeta podría haberse desplazado a lo largo de su eje, en un evento denominado “deriva polar verdadera”, durante la cual cambia la ubicación geográfica de los polos norte y sur.

Aunque no es raro que cambie un campo planetario, los nuevos resultados refuerzan la idea de que la evolución magnética de Mercurio ha sido muy distinta de la de la Tierra.

Estudiar los campos magnéticos de otros planetas ayuda a los científicos a comprender cómo evolucionan los campos magnéticos, incluso en la Tierra. Observar el comportamiento de otros núcleos metálicos ayuda a los científicos a comprender más sobre la formación inicial y la maduración posterior de los planetas en el Sistema Solar.

Algunos planetas tienen núcleos líquidos metálicos. Los científicos generalmente creen que el campo magnético de un planeta proviene de los movimientos fluidos de su núcleo metálico. El campo magnético crea una magnetosfera que rodea el planeta. La magnetosfera de la Tierra bloquea mucha radiación cósmica y solar, permitiendo que exista vida.

Mercurio es el otro cuerpo en el Sistema Solar, además de la Tierra, que posee un núcleo fundido capaz de generar un campo magnético. Es el planeta más pequeño de su entorno y carece de satélites naturales, como Venus.

Referencia

Constraining the Early History of Mercury and Its Core Dynamo by Studying the Crustal Magnetic Field. Joana S. Oliveira et al. Journal of Geophysical Research,  30 July 2019. DOI:https://doi.org/10.1029/2019JE005938
 
 

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Campaña para mantener a UK y Suiza en el espacio científico europeo 8 febrero, 2022
    La comunidad científica europea se moviliza para que el Reino Unido y Suiza no se queden fuera del programa estrella de la UE en materia de I+D debido a cuestiones políticas. Reclama un espacio único de investigación para afrontar los desafíos globales.
    Redacción T21
  • El universo no está tan "afinado" para la vida como pensamos, según un estudio 8 febrero, 2022
    El “ajuste fino” sería una ilusión: la vida inteligente no se habría generado en el Universo a partir de una serie de condiciones precisas y exactamente sincronizadas. Por el contrario, probablemente habría evolucionado bajo circunstancias muy diferentes, alejadas de la idea de un ajuste perfecto.
    Pablo Javier Piacente
  • Los chimpancés curan sus heridas con ungüento de mosquitos masticados 8 febrero, 2022
    Los chimpancés aplican mosquitos masticados para tratar heridas abiertas, lo que podría ser evidencia de automedicación en animales. Esos insectos podrían tener propiedades calmantes: se ha demostrado científicamente que algunos tienen incluso efectos antibióticos o antivirales.
    Redacción T21
  • Descubren cómo el cerebro convierte una idea en música 8 febrero, 2022
    Científicos alemanes han descubierto cómo el cerebro convierte una idea musical en el movimiento de los dedos cuando tocamos el piano, así como que, cuando tocamos a dúo, nuestros cerebros comparten una misma longitud de onda.
    MPS/T21
  • Una bacteria se transforma en un largo hilo para infectar células más rápidamente y crecer sin límites 7 febrero, 2022
    Una bacteria puede mutar su forma hasta convertirse en un interminable hilo y multiplicar por 100 veces su tamaño: de esta manera, logra infectar más células en menos tiempo. Es una virulenta variante de infección bacteriana que no se había identificado hasta el momento.
    Pablo Javier Piacente
  • Detectan el primer agujero negro fuera de control en la Vía Láctea 7 febrero, 2022
    Por primera vez, un equipo internacional de científicos ha logrado detectar un agujero negro errante, solitario e inactivo en nuestra galaxia, a poco menos de 5.200 años luz de distancia de la Tierra. El misterioso objeto se mueve a través de la Vía Láctea a una velocidad de 45 kilómetros por segundo: los astrónomos confirmaron […]
    Pablo Javier Piacente
  • Los abismos oceánicos están profusamente poblados de vida prístina 7 febrero, 2022
    Los abismos oceánicos triplican la diversidad microbiana de los niveles superiores de los mares terrestres, pero la mayor parte de esa vida es desconocida por la ciencia: lo revela el análisis de casi 1.700 muestras y dos mil millones de secuencias de ADN recogidas en todo el mundo.
    Eduardo Martínez de la Fe
  • El universo temprano estaba siete veces más caliente que el actual 7 febrero, 2022
    El universo temprano tenía una temperatura siete veces mayor que la actual, han comprobado los astrofísicos: utilizaron una nube de vapor de agua proyectada por una lejana galaxia para observar el estado del Universo en sus primeras etapas. Nueva puerta para el estudio de la energía oscura.
    Redacción T21
  • El cerebro es como una máquina del tiempo 6 febrero, 2022
    El cerebro actualiza cada 15 segundos la información que procede de los ojos para que podamos gestionar la vida cotidiana sin que caigamos en alucinaciones. Es como una máquina del tiempo que nos proporciona estabilidad visual.
    Redacción T21
  • Las ardillas tienen el secreto de los viajes al espacio profundo 5 febrero, 2022
    La pérdida de masa muscular que sufren los astronautas en el entorno de gravedad cero del espacio se puede subsanar replicando el mecanismo natural que usan las ardillas para hibernar y despertarse meses después en perfecto estado físico.
    Redacción T21