Tendencias21

El caos clásico y el entrelazamiento cuántico están relacionados

Investigadores de la Universidad de California en Santa Bárbara y Google han descubierto que el caos de la física clásica y el entrelazamiento cuántico están relacionados. Esto quiere decir que un sistema cuántico, si se deja evolucionar, acabará en un estado de equilibrio similar al de las partículas de un gas soltadas en una habitación.

El caos clásico y el entrelazamiento cuántico están relacionados

Usando un pequeño sistema cuántico que consta de tres qubits superconductores, investigadores de la Universidad de California en Santa Bárbara (UCSB, EE.UU.) y Google han descubierto una relación entre aspectos de la física clásica y la cuántica que se creía que no estaban relacionados: el caos clásico y el entrelazamiento cuántico.

Sus hallazgos sugieren que sería posible usar los sistemas cuánticos controlables para investigar algunos aspectos fundamentales de la naturaleza.

«Es un poco sorprendente porque el caos es un concepto totalmente clásico: no hay idea de caos en un sistema cuántico», explica Charles Neill, investigador del Departamento de Física de la UCSB y autor principal de un artículo que aparece en la revista Nature Physics. «Del mismo modo, no hay concepto de entrelazamiento dentro de los sistemas clásicos. Y, sin embargo, resulta que el caos y el entrelazamiento están relacionados de forma realmente muy fuerte y clara».

Iniciada en el siglo XV, la física clásica generalmente examina y describe los sistemas más grandes que los átomos y las moléculas. Consta de cientos de años de estudio, incluidas las leyes del movimiento de Newton, la electrodinámica, la relatividad, la termodinámica, así como la teoría del caos -el campo que estudia el comportamiento de los sistemas altamente sensibles e impredecibles-.

Un ejemplo clásico de un sistema caótico es el tiempo, en el que un cambio relativamente pequeño en una parte del sistema es suficiente para frustrar las predicciones -y los planes de vacaciones- en cualquier parte del mundo.

Sin embargo, en escalas de tamaño y longitud menores, como las relacionadas con los átomos y los fotones y sus comportamientos, la física clásica se queda corta. En el siglo XX la física cuántica surgió, con su ciencia al parecer contraria a la intuición y a veces controvertida, incluyendo las nociones de superposición (la teoría de que una partícula puede estar situada en varios lugares a la vez) y el entrelazamiento (partículas que están profundamente ligadas y se comportan como tales a pesar de la distancia física entre la una y la otra). Y así comenzó la búsqueda continua de las conexiones entre los dos campos.

Todos los sistemas son fundamentalmente sistemas cuánticos, dice Neill en la nota de prensa de la UCSB, pero los medios para describir en un sentido cuántico el comportamiento caótico de, por ejemplo, las moléculas de aire de una habitación vacía, siguen estando limitados.

El caos clásico y el entrelazamiento cuántico están relacionados

Un globo

Imagínese cogiendo un globo lleno de moléculas de aire, etiquetándolas de alguna forma por para poder seguirlas, y liberándolas en una habitación sin moléculas de aire, como señala el coautor e investigador de UCSB / Google Pedram Roushan.

Un posible resultado es que las moléculas de aire permanezcan agrupadas en una pequeña nube siguiendo la misma trayectoria alrededor de la habitación. Y, sin embargo, continúa, «como probablemente podemos intuir, las moléculas serán más propensas a despegar en una variedad de velocidades y direcciones, rebotando en las paredes e interactuando unas con otras, descansando cuando la sala esté suficientemente saturada con ellas».

«La física subyacente es el caos, en esencia», dice Rousham, en la información de la UCSB. El hecho de que las moléculas se paren -al menos en el nivel macroscópico- es el resultado de la termalización, el equilibrio que se produce cuando alcanzan una saturación uniforme dentro del sistema.

Pero en el mundo infinitesimal de la física cuántica, todavía hay pocas herramientas para describir ese comportamiento. La matemática de la mecánica cuántica, dice Roushan, no permite el caos descrito por las leyes del movimiento de Newton.

Para investigarlo, el equipo del laboratorio del profesor de física John Martinis idearon un experimento utilizando tres bits cuánticos o qubits, las unidades básicas de cálculo de la computadora cuántica.

A diferencia de los bits informáticos clásicos, que utilizan un sistema binario de dos estados posibles (por ejemplo, cero / uno), un qubit puede también utilizar una superposición de dos estados (cero y uno) como un solo estado.

Además, varios qubits pueden entrelazarse, o vincularse tan estrechamente que sus mediciones se correlacionan de forma automática. Mediante la manipulación de estos qubits con pulsos electrónicos, Neill hizo que interactuaran, giraran y evolucionaran en el análogo cuántico de un sistema clásico de alta sensibilidad.

Entropía y entrelazamiento

El resultado es un mapa de la entropía de entrelazamiento de un qubit que, con el tiempo, llega a parecerse mucho a la de la dinámica clásica: las regiones de entrelaamiento en el mapa cuántico se asemejan a las regiones de caos en el mapa clásico. Las islas de bajo entrelazamiento cuántico en el mapa coinciden con los lugares de bajo caos en el mapa clásico.

«Hay una clara conexión entre el entrelazamiento y el caos en estas dos imágenes,» dice Neill. «Y, resulta que la termalización es lo que conecta el caos y el entrelazamiento. Resulta que en realidad son las fuerzas impulsoras de la termalización.»

«Lo que cuenta es que en casi cualquier sistema cuántico, incluidos los ordenadores cuánticos, si dejamos que evolucione y empezamos a estudiar lo que sucede como función del tiempo, se producirá una termalización», añade Neill.

Los resultados del estudio tienen implicaciones fundamentales para la computación cuántica. A nivel de tres qubits, el cálculo es relativamente simple, dice Roushan, pero a medida que los investigadores construyen ordenadores cuánticos cada vez más sofisticados y potentes que incorporan más qubits para el estudio de problemas muy complejos que están más allá de la capacidad de la informática clásica -como los ámbitos del aprendizaje automático, la inteligencia artificial, la dinámica de fluidos o la química cuántica- un procesador optimizado para estos cálculos serán una herramienta muy poderosa.

«Esto significa que podremos estudiar las cosas que son completamente imposibles de estudiar en este momento, una vez tengamos sistemas más grandes», dice Neill.

Referencia bibliográfica:

C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z. Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, J. Mutus, P. J. J. O’Malley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. Polkovnikov, J. M. Martinis: Ergodic dynamics and thermalization in an isolated quantum system. Nature Physics (2016). DOI: 10.1038/nphys3830.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Ya es posible transmitir el tacto a través de Internet 26 junio, 2024
    Un nuevo estándar para la compresión y transmisión del sentido del tacto mediante Internet sienta las bases para la telecirugía, la teleconducción y nuevas experiencias de juego en línea, entre otras aplicaciones. El flamante estándar HCTI (Haptic Codecs for the Tactile Internet) es para el “tacto digital” lo que son JPEG, MP3 y MPEG para […]
    Pablo Javier Piacente
  • Las primeras muestras de la cara oculta de la Luna ya están en la Tierra 26 junio, 2024
    La cápsula de reingreso de la sonda Chang'e-6 de China, que transporta hasta dos kilogramos de materiales extraídos y perforados de la cuenca más antigua de la Luna ubicada en su lado oscuro, aterrizó este martes 25 de junio en la región de Mongolia Interior y fue rápidamente recuperada, según informó la Administración Nacional del […]
    Pablo Javier Piacente
  • La Tierra tendrá dos soles dentro de 1,3 millones de años y durante 60.000 años 26 junio, 2024
    Dentro de 1,3 millones de años, la Tierra tendrá una especie de segundo sol porque la estrella Gliese 710 se acercará a 1,1 años luz de la Tierra y la veríamos del mismo tamaño que Júpiter. Lo malo es que esa alteración cósmica puede provocar un episodio en nuestro planeta como el que acabó con […]
    Eduardo Martínez de la Fe
  • China descubre grafeno natural en la Luna 25 junio, 2024
    Investigadores chinos han descubierto recientemente grafeno natural de escasas capas por primera vez en la Luna, a partir de las muestras traídas a la Tierra por la sonda Chang'e 5. El hallazgo proporciona nuevos conocimientos sobre las actividades geológicas, la historia evolutiva y las características ambientales de la Luna.
    Pablo Javier Piacente
  • Los incendios forestales extremos se duplicaron en los últimos 20 años en todo el planeta 25 junio, 2024
    Una nueva investigación concluye que la frecuencia e intensidad de los incendios forestales extremos se ha más que duplicado en todo el mundo en las últimas dos décadas, debido al calentamiento global antropogénico y otros factores relacionados. Se trata de la primera ocasión en la cual los científicos pudieron trazar una tendencia global para los […]
    Pablo Javier Piacente
  • Detectado en el Mediterráneo el neutrino más energético del universo 25 junio, 2024
    El neutrino más potente jamás observado ha dejado su huella en las profundidades del Mediterráneo, aunque todavía se desconoce de qué rincón del universo procede. Los neutrinos cosmogénicos son los mensajeros de algunos de los eventos más cataclísmicos del cosmos.
    Eduardo Martínez de la Fe
  • La IA identifica seis formas diferentes de depresión 24 junio, 2024
    Los científicos han identificado seis formas biológicamente distintas de depresión gracias a la aplicación de la Inteligencia Artificial (IA) en estudios cerebrales. El hallazgo podría explicar por qué algunas personas no responden a los tratamientos tradicionales para la afección, como los antidepresivos y la terapia psicológica.
    Pablo Javier Piacente
  • La NASA pondrá en órbita una estrella artificial que revolucionará el estudio del Universo 24 junio, 2024
    La NASA encarará un ambicioso proyecto para colocar en órbita una estrella artificial: permitirá la calibración de telescopios a niveles previamente inalcanzables. El proyecto tiene como objetivo mejorar significativamente las mediciones de la luminosidad estelar y abordar varios otros desafíos que dificultan la astrofísica moderna.
    Pablo Javier Piacente
  • Los macacos nos enseñan cómo sobrevivir a un desastre natural 24 junio, 2024
    Los macacos de la isla caribeña de Puerto Rico se volvieron más tolerantes y menos agresivos después del huracán María, que los obligó a compartir la sombra de los árboles para sobrevivir al intenso calor.
    Redacción T21
  • Extrañas formas de vida se ocultan en antiguas cuevas de lava de Hawai 23 junio, 2024
    Científicos estadounidenses han logrado identificar una gran diversidad de especies microbianas únicas, que se han desarrollado en cuevas geotérmicas, tubos de lava y fumarolas volcánicas de la isla de Hawái. Estas estructuras subterráneas se formaron hace entre 65 y 800 años y reciben poca o ninguna luz solar, en ambientes similares a los que pueden encontrarse […]
    Pablo Javier Piacente