Tendencias21

El espacio-tiempo forma un arco-iris como el de la luz

Físicos teóricos de la Universidad de Varsovia (Polonia) han demostrado que el espacio-tiempo produce una especie de arco iris como el de la luz, es decir, que las partículas perciben el espacio-tiempo de forma diferente según su energía.

El espacio-tiempo forma un arco-iris como el de la luz

Cuando la luz blanca pasa a través de un prisma, el arco iris que aparece al otro lado revela una rica paleta de colores. Físicos teóricos de la Universidad de Varsovia han demostrado que en los modelos del Universo que utilizan alguna de las teorías cuánticas de la gravedad también debe haber un «arco iris» parecido, compuesto por diferentes versiones del espacio-tiempo.

El mecanismo predice que en lugar de un solo espacio-tiempo común, las partículas de diferentes energías básicamente perciben versiones ligeramente modificadas del mismo.

Probablemente todos hemos visto el experimento: cuando la luz blanca pasa a través de un prisma se divide para formar un arco iris. Esto es porque la luz blanca es de hecho una mezcla de fotones de diferentes energías, y cuanto mayor es la energía del fotón, más lo desvía el prisma.

Por lo tanto, podríamos decir que el arco iris se debe a que los fotones de diferentes energías sienten el mismo prisma con propiedades ligeramente diferentes. Desde hace años se ha sospechado que las partículas de diferentes energías de los modelos cuánticos del universo sienten el espacio-tiempo con estructuras ligeramente diferentes.

Estas hipótesis no se derivaban de la teoría cuántica, sin embargo, sino que se basaban en conjeturas. Ahora, el grupo de la universidad polaca, dirigido por Jerzy Lewandowski, ha formulado un mecanismo general responsable de la aparición de un arco iris espacio-tiemporal.

«Hace dos años informamos de que en nuestros modelos cosmológicos cuánticos, los diferentes tipos de partículas sienten la existencia de espacio-tiempos con propiedades ligeramente diferentes. Ahora resulta que la situación es aún más complicada. Hemos descubierto un mecanismo verdaderamente genérico, por lo que el tejido del espacio-tiempo sentido por una partícula dada debe variar en función no sólo de su tipo, sino incluso de su energía «, dice el profesor Lewandowski en la nota de prensa de la universidad.

En el debate actual los físicos de Varsovia están utilizando un modelo cosmológico que contiene sólo dos componentes: la gravedad y un tipo de materia. Bajo la teoría general de la relatividad, un campo gravitatorio se describe como deformaciones del espacio-tiempo, mientras que la materia se representa como un campo escalar (el tipo más simple de campo, en el que a cada punto del espacio se le asigna un único valor).

«Hoy en día hay muchas teorías que compiten con la gravedad cuántica. Por lo tanto, formulamos nuestro modelo en términos muy generales de modo que se pueda aplicar a cualquiera de ellos. Alguien podría asumir el tipo de campo gravitatorio -que en la práctica equivale al espacio-tiempo- que se postula en una teoría cuántica, y otra persona podría asumir otro. Algunos operadores matemáticos del modelo cambian, pero no la naturaleza de los fenómenos que ocurren en él», explica el estudiante de doctorado Andrea Dapor (UW Física).

El modelo así diseñado fue luego cuantizado : en otras palabras, los valores continuos, que pueden diferir entre sí en cualquier cuantía arbitrariamente pequeña, se convierten en valores discretos, que sólo pueden diferir en intervalos específicos (cuantos).

La investigación sobre la dinámica del modelo cuantizado reveló un resultado sorprendente: los procesos modelados usando la teoría cuántica sobre el espacio-tiempo cuántico mostraron la misma dinámica que cuando la teoría cuántica se aplica a un espacio-tiempo continuo clásico, es decir, el que conocemos de la experiencia cotidiana.

«Este resultado es simplemente asombroso. Empezamos con el mundo difuso de la geometría cuántica, donde incluso es difícil decir cuál es el tiempo y lo que es el espacio, y sin embargo, los fenómenos que ocurren en nuestro modelo cosmológico se ven ¡como si estuvieran sucediendo en el espacio-tiempo ordinario!», dice el estudiante de doctorado Mehdi Assanioussi.

Las cosas dieron un giro aún más interesante cuando los físicos observaron excitaciones del campo escalar, que es interpretado como partículas. Los cálculos demostraron que en este modelo las partículas que difieren en términos de energía interactúan con el espacio-tiempo cuántico de manera algo diferente -del mismo modo que los fotones de diferentes energías interactúan con un prisma de manera algo diferente. Este resultado significa que incluso la estructura efectiva del espacio-tiempo clásico detectada por partículas individuales debe depender de su energía.

Arco iris

La aparición de un arco iris normal se puede describir en términos de un índice de refracción, cuyo valor varía en función de la longitud de onda de la luz. En el caso del arco iris análogo del espacio-tiempo, se propone una relación similar: la función beta, una medida del grado en que la estructura del espacio-tiempo clásico difiere según la experiencia de las diferentes partículas.

Esta función refleja el grado de no-clasicidad del espacio-tiempo cuántico: en condiciones similares a las clásicas, la función es casi 0, mientras que en condiciones verdaderamente cuánticas su valor es cercano a 1.

Hoy en día el Universo está en un estado de tipo clásico, por lo que el valor beta debe estar cerca de 0, y las estimaciones realizadas por otros grupos de físicos de hecho sugieren que no excede de 0,01. Este pequeño valor para la función beta significa que actualmente el arco iris espacio-temporal es muy estrecho y no puede ser detectado experimentalmente.

Gravedad

El estudio realizado por los teóricos de Varsovia, financiados por subvenciones del Centro Nacional de Ciencias de Polonia, ha dado otra conclusión interesante: el arco iris del espacio-tiempo es el resultado de la gravedad cuántica.

Los físicos en general comparten la opinión de que los efectos de este tipo sólo se hacen visibles en energías gigantescas cerca de la energía de Planck, miles de millones de millones de veces la energía de las partículas que se aceleran en el Gran Colisionador de Hadrones (LHC) de Ginebra (Suiza). Sin embargo, el valor de la función beta depende del tiempo, y en los momentos cercanos a la gran explosión podría haber sido mucho mayor.

Cuando beta está cerca de 1, el arco iris del espacio-tiempo se expande considerablemente. Como resultado, en tales condiciones quizás se pudo observar el efecto arco iris de la gravedad cuántica incluso a energías de partículas cientos de veces más pequeñas que la energía de los protones del LHC.

Referencia bibliográfica:

Mehdi Assanioussi, Andrea Dapor, Jerzy Lewandowski: Rainbow metric from quantum gravity. Physics Letters B (2015). DOI: 10.1016/j.physletb.2015.10.043.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Ya es posible transmitir el tacto a través de Internet 26 junio, 2024
    Un nuevo estándar para la compresión y transmisión del sentido del tacto mediante Internet sienta las bases para la telecirugía, la teleconducción y nuevas experiencias de juego en línea, entre otras aplicaciones. El flamante estándar HCTI (Haptic Codecs for the Tactile Internet) es para el “tacto digital” lo que son JPEG, MP3 y MPEG para […]
    Pablo Javier Piacente
  • Las primeras muestras de la cara oculta de la Luna ya están en la Tierra 26 junio, 2024
    La cápsula de reingreso de la sonda Chang'e-6 de China, que transporta hasta dos kilogramos de materiales extraídos y perforados de la cuenca más antigua de la Luna ubicada en su lado oscuro, aterrizó este martes 25 de junio en la región de Mongolia Interior y fue rápidamente recuperada, según informó la Administración Nacional del […]
    Pablo Javier Piacente
  • La Tierra tendrá dos soles dentro de 1,3 millones de años y durante 60.000 años 26 junio, 2024
    Dentro de 1,3 millones de años, la Tierra tendrá una especie de segundo sol porque la estrella Gliese 710 se acercará a 1,1 años luz de la Tierra y la veríamos del mismo tamaño que Júpiter. Lo malo es que esa alteración cósmica puede provocar un episodio en nuestro planeta como el que acabó con […]
    Eduardo Martínez de la Fe
  • China descubre grafeno natural en la Luna 25 junio, 2024
    Investigadores chinos han descubierto recientemente grafeno natural de escasas capas por primera vez en la Luna, a partir de las muestras traídas a la Tierra por la sonda Chang'e 5. El hallazgo proporciona nuevos conocimientos sobre las actividades geológicas, la historia evolutiva y las características ambientales de la Luna.
    Pablo Javier Piacente
  • Los incendios forestales extremos se duplicaron en los últimos 20 años en todo el planeta 25 junio, 2024
    Una nueva investigación concluye que la frecuencia e intensidad de los incendios forestales extremos se ha más que duplicado en todo el mundo en las últimas dos décadas, debido al calentamiento global antropogénico y otros factores relacionados. Se trata de la primera ocasión en la cual los científicos pudieron trazar una tendencia global para los […]
    Pablo Javier Piacente
  • Detectado en el Mediterráneo el neutrino más energético del universo 25 junio, 2024
    El neutrino más potente jamás observado ha dejado su huella en las profundidades del Mediterráneo, aunque todavía se desconoce de qué rincón del universo procede. Los neutrinos cosmogénicos son los mensajeros de algunos de los eventos más cataclísmicos del cosmos.
    Eduardo Martínez de la Fe
  • La IA identifica seis formas diferentes de depresión 24 junio, 2024
    Los científicos han identificado seis formas biológicamente distintas de depresión gracias a la aplicación de la Inteligencia Artificial (IA) en estudios cerebrales. El hallazgo podría explicar por qué algunas personas no responden a los tratamientos tradicionales para la afección, como los antidepresivos y la terapia psicológica.
    Pablo Javier Piacente
  • La NASA pondrá en órbita una estrella artificial que revolucionará el estudio del Universo 24 junio, 2024
    La NASA encarará un ambicioso proyecto para colocar en órbita una estrella artificial: permitirá la calibración de telescopios a niveles previamente inalcanzables. El proyecto tiene como objetivo mejorar significativamente las mediciones de la luminosidad estelar y abordar varios otros desafíos que dificultan la astrofísica moderna.
    Pablo Javier Piacente
  • Los macacos nos enseñan cómo sobrevivir a un desastre natural 24 junio, 2024
    Los macacos de la isla caribeña de Puerto Rico se volvieron más tolerantes y menos agresivos después del huracán María, que los obligó a compartir la sombra de los árboles para sobrevivir al intenso calor.
    Redacción T21
  • Extrañas formas de vida se ocultan en antiguas cuevas de lava de Hawai 23 junio, 2024
    Científicos estadounidenses han logrado identificar una gran diversidad de especies microbianas únicas, que se han desarrollado en cuevas geotérmicas, tubos de lava y fumarolas volcánicas de la isla de Hawái. Estas estructuras subterráneas se formaron hace entre 65 y 800 años y reciben poca o ninguna luz solar, en ambientes similares a los que pueden encontrarse […]
    Pablo Javier Piacente