Tendencias21

Empaquetan los qubits para alcanzar una mayor potencia en computación cuántica

Físicos de la Universidad de Pensilvania (EE.UU.) han desarrollado una nueva manera de empaquetar bits cuánticos -qubits- para conseguir una potencia de computación mucho mayor. Para ello utilizan luz láser y microondas, que forman matrices de qubits en tres dimensiones.

Empaquetan los qubits para alcanzar una mayor potencia en computación cuántica

La era de los ordenadores cuánticos está un paso más cerca, como resultado de una investigación publicada en la revista Science. Un equipo de la Universidad Estatal de Pensilvania (PSU, EE.UU.) ha ideado y demostrado una nueva forma de empaquetar mucha más potencia de computación cuántica en un espacio mucho más pequeño y con un control mucho mayor que hasta ahora.

El avance, utilizando una matriz de 3 dimensiones de átomos en estados cuánticos llamados bits cuánticos -o qubits-, ha sido realizado por David S. Weiss, profesor de física, y tres estudiantes de su laboratorio. «Nuestro resultado es uno de los muchos desarrollos importantes que siguen siendo necesarios en el camino hacia el logro de los ordenadores cuánticos, que serán de utilidad para hacer cálculos que son imposibles de hacer hoy, con aplicaciones en criptografía para la seguridad de datos electrónicos y otros campos de computación intensiva», explica en la nota de prensa de la universidad.

La nueva técnica utiliza tanto luz láser como microondas para controlar de forma precisa la conmutación de qubits individuales seleccionados de un estado cuántico a otro sin alterar los estados de los otros átomos en la matriz cúbica. La nueva técnica demuestra el uso potencial de los átomos como componentes básicos de los circuitos en los ordenadores cuánticos futuros.

Los científicos inventaron una forma innovadora para organizar y controlar los qubits. El artículo describe la nueva técnica, que el equipo de Weiss tiene previsto seguir desarrollando. El logro también se espera que sea útil para los científicos que persiguen otros enfoques para la construcción de una computadora cuántica, incluyendo los basados en otros átomos, en iones, o en sistemas de átomos similares en 1 o 2 dimensiones. «Si esta técnica se adopta en esas otras geometrías, también se obtendría la misma robustez», dice Weiss.

Para acorralar a sus átomos cuánticos en un dibujo de 3-D ordenado para sus experimentos, el equipo construyó una celosía hecha por haces de luz para atrapar y mantener los átomos en una disposición cúbica de cinco planos apilados -como un sándwich hecho con cinco rebanadas de pan-, cada uno con espacio para 25 átomos equidistantes.

La disposición forma un cubo con un patrón ordenado de localizaciones individuales para 125 átomos. Los científicos llenaron algunas de las posibles ubicaciones con qubits que constan de átomos de cesio neutrales -que no tienen carga positiva o negativa-. A diferencia de los bits en un ordenador clásico, que por lo general son ceros o unos, cada uno de los qubits del experimento del equipo de Weiss tiene la capacidad -difícil de imaginar- de estar en más de un estado a la vez: una característica central de la mecánica cuántica llamada superposición cuántica.

Empaquetan los qubits para alcanzar una mayor potencia en computación cuántica

Luz

Weiss y su equipo utilizan otro tipo de herramienta de luz -haces cruzados de luz láser – para apuntar a los átomos individuales de la red. Enfocar estos dos rayos láser, llamados haces de «direccionamiento», en un átomo objetivo desplaza algunos de los niveles de energía de ese átomo alrededor de dos veces más que los de cualquiera de los otros átomos de la matriz, incluidos los que están en medio de una de los haces de direccionamiento en su camino hacia el objetivo.

Cuando los científicos bañan a continuación toda la matriz con un lavado uniforme de microondas, el estado del átomo con los niveles de energía desplazados cambia, mientras que los estados de todos los átomos no lo hacen.

«Hemos establecido más qubits en diferentes superposiciones cuánticas precisas al mismo tiempo que en cualquier sistema experimental anterior», dice Weiss. Los científicos también diseñaron su sistema para ser muy insensible a los detalles exactos de las alineaciones o a la potencia de los haces de luz utilizados, lo cual dice Weiss que es una buena cosa porque «no conviene depender de la intensidad exacta de la luz o de la alineación concreta».

Una de las maneras en que los científicos demostraron su capacidad para cambiar el estado cuántico de los átomos individuales fue cambiando los estados de átomos seleccionados en tres de los planos apilados dentro de la matriz cúbica con el fin de dibujar las letras P, S y U -las letras que representan a la Universidad Estatal de Pensilvania en inglés-.

«Cambiamos la superposición cuántica de los átomos de PSU para que fuera diferente de la superposición cuántica de los otros átomos de la matriz», dice Weiss. «Tenemos un sistema de fidelidad bastante alta. Podemos hacer selecciones específicas con una fiabilidad del 99,7%, y tenemos un plan para hacer que llegue al 99,99%.»

Entre los objetivos que Weiss tiene para la investigación futura de su equipo es conseguir que los qubits «tengan funciones de onda cuántica entrelazadas en las que el estado de una partícula esté implícitamente correlacionado con el estado de las otras partículas a su alrededor.»

Weiss dice que esta conexión entrelazada entre qubits es un elemento crítico necesario para la computación cuántica, y espera que el desarrollo de las técnicas mostradas en el prototipo de su equipo permitirá finalmente a su laboratorio llevar a cabo operaciones de entrelazamiento de alta calidad para la computación cuántica.

«Llenar el cubo con exactamente un átomo por sitio y crear entrelazamientos entre los átomos en cualquiera de los sitios que elegimos son algunos de nuestros objetivos de investigación a más corto plazo», dice Weiss.

Referencia bibliográfica:

Y. Wang, A. Kumar, T.-Y. Wu, D. S. Weiss: Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science (2016). DOI: 10.1126/science.aaf2581.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Detectan indicios de posible actividad volcánica pasada en el lado oscuro de la Luna 30 agosto, 2024
    Investigadores chinos han identificado signos de “magmatismo oculto” debajo de la superficie lunar, cerca del sitio de aterrizaje de la sonda Chang'e-6 en el lado oculto de la Luna. El hallazgo arroja nueva luz sobre la historia geológica del satélite natural, ya que podría tratarse de un signo primario de antiguo vulcanismo.
    Pablo Javier Piacente
  • El Atlántico ecuatorial se está enfriando a toda velocidad 30 agosto, 2024
    Un sector significativo del Océano Atlántico cerca del ecuador se ha estado enfriando a velocidades récord, y los científicos no pueden averiguar aún por qué: aunque hay algunas pistas, los especialistas no han logrado explicar todavía cómo el parche frío anómalo, que se limita a un tramo de océano que abarca varios grados al norte […]
    Pablo Javier Piacente
  • La cosecha mundial de frutas y verduras se desploma por falta de polinizadores 30 agosto, 2024
    La disminución del número de insectos polinizadores como las abejas y las mariposas está provocando importantes pérdidas de cultivos en todo el mundo: hasta dos tercios de los campos producen menos frutas y verduras de las que podrían producir con la ayuda de suficientes polinizadores.
    Redacción T21
  • Una ventana inteligente genera electricidad al recibir el impacto de la lluvia 29 agosto, 2024
    Un grupo de investigadores ha anunciado la creación de un prototipo de ventana “inteligente” que puede generar electricidad a partir de la energía de impacto de las gotas de lluvia. Además, las ventanas también reflejan la luz infrarroja para reducir las temperaturas interiores sin cambiar su transparencia, favoreciendo el ahorro energético y el confort climático […]
    Pablo Javier Piacente
  • Las células bacterianas transmiten recuerdos a sus descendientes 29 agosto, 2024
    Las células bacterianas pueden “recordar” cambios breves y temporales en sus cuerpos y en su entorno inmediato, para luego transmitirlos hacia su descendencia, según un nuevo estudio. Los investigadores comprobaron que el estrés temporal puede causar cambios hereditarios, pero sin alterar la genética.
    Pablo Javier Piacente
  • Las guerras alimentan las crisis climáticas 29 agosto, 2024
    Los conflictos armados no solo devastan vidas y territorios, sino que también impactan en el cambio climático. Todos los ejércitos del mundo forman ya el cuarto país más contaminante del planeta.
    Eduardo Martínez de la Fe
  • Las brújulas cuánticas están más cerca de reemplazar al GPS 28 agosto, 2024
    Un equipo de investigadores ha concretado un paso crucial para llevar a la realidad un sistema de "brújulas cuánticas portátiles", que algún día podrían ayudar a las personas a navegar sin requerir el Sistema de Posicionamiento Global (GPS).
    Pablo Javier Piacente
  • La "animación suspendida" de seres humanos podría ser una realidad 28 agosto, 2024
    Un proyecto estadounidense reflota la idea de la "animación suspendida" en seres humanos, que consiste en ralentizar momentáneamente los procesos vitales de un organismo, para ganar tiempo en caso de accidentes o enfermedades que pongan en riesgo la vida. Aunque ya se había probado una solución similar en animales, ahora el nuevo proyecto motoriza este […]
    Pablo Javier Piacente
  • La luz de mundos distantes puede revelar vida extraterrestre 28 agosto, 2024
    ¿Hay vida extraterrestre ahí fuera? El astrofísico Kevin Heng analiza las señales más diminutas de la atmósfera de los exoplanetas para responder a una de las preguntas más importantes que existen.
    Alexander Stirn/ EINSICHTEN
  • El amor paterno es más intenso que el amor romántico 27 agosto, 2024
    Los distintos tipos de amor se manifiestan de forma diferente en el cerebro, que reacciona con mayor fuerza al amor de los padres hacia sus hijos, seguido de cerca por el amor romántico.
    Pablo Javier Piacente