Tendencias21

Empaquetan los qubits para alcanzar una mayor potencia en computación cuántica

Físicos de la Universidad de Pensilvania (EE.UU.) han desarrollado una nueva manera de empaquetar bits cuánticos -qubits- para conseguir una potencia de computación mucho mayor. Para ello utilizan luz láser y microondas, que forman matrices de qubits en tres dimensiones.

Empaquetan los qubits para alcanzar una mayor potencia en computación cuántica

La era de los ordenadores cuánticos está un paso más cerca, como resultado de una investigación publicada en la revista Science. Un equipo de la Universidad Estatal de Pensilvania (PSU, EE.UU.) ha ideado y demostrado una nueva forma de empaquetar mucha más potencia de computación cuántica en un espacio mucho más pequeño y con un control mucho mayor que hasta ahora.

El avance, utilizando una matriz de 3 dimensiones de átomos en estados cuánticos llamados bits cuánticos -o qubits-, ha sido realizado por David S. Weiss, profesor de física, y tres estudiantes de su laboratorio. «Nuestro resultado es uno de los muchos desarrollos importantes que siguen siendo necesarios en el camino hacia el logro de los ordenadores cuánticos, que serán de utilidad para hacer cálculos que son imposibles de hacer hoy, con aplicaciones en criptografía para la seguridad de datos electrónicos y otros campos de computación intensiva», explica en la nota de prensa de la universidad.

La nueva técnica utiliza tanto luz láser como microondas para controlar de forma precisa la conmutación de qubits individuales seleccionados de un estado cuántico a otro sin alterar los estados de los otros átomos en la matriz cúbica. La nueva técnica demuestra el uso potencial de los átomos como componentes básicos de los circuitos en los ordenadores cuánticos futuros.

Los científicos inventaron una forma innovadora para organizar y controlar los qubits. El artículo describe la nueva técnica, que el equipo de Weiss tiene previsto seguir desarrollando. El logro también se espera que sea útil para los científicos que persiguen otros enfoques para la construcción de una computadora cuántica, incluyendo los basados en otros átomos, en iones, o en sistemas de átomos similares en 1 o 2 dimensiones. «Si esta técnica se adopta en esas otras geometrías, también se obtendría la misma robustez», dice Weiss.

Para acorralar a sus átomos cuánticos en un dibujo de 3-D ordenado para sus experimentos, el equipo construyó una celosía hecha por haces de luz para atrapar y mantener los átomos en una disposición cúbica de cinco planos apilados -como un sándwich hecho con cinco rebanadas de pan-, cada uno con espacio para 25 átomos equidistantes.

La disposición forma un cubo con un patrón ordenado de localizaciones individuales para 125 átomos. Los científicos llenaron algunas de las posibles ubicaciones con qubits que constan de átomos de cesio neutrales -que no tienen carga positiva o negativa-. A diferencia de los bits en un ordenador clásico, que por lo general son ceros o unos, cada uno de los qubits del experimento del equipo de Weiss tiene la capacidad -difícil de imaginar- de estar en más de un estado a la vez: una característica central de la mecánica cuántica llamada superposición cuántica.

Empaquetan los qubits para alcanzar una mayor potencia en computación cuántica

Luz

Weiss y su equipo utilizan otro tipo de herramienta de luz -haces cruzados de luz láser – para apuntar a los átomos individuales de la red. Enfocar estos dos rayos láser, llamados haces de «direccionamiento», en un átomo objetivo desplaza algunos de los niveles de energía de ese átomo alrededor de dos veces más que los de cualquiera de los otros átomos de la matriz, incluidos los que están en medio de una de los haces de direccionamiento en su camino hacia el objetivo.

Cuando los científicos bañan a continuación toda la matriz con un lavado uniforme de microondas, el estado del átomo con los niveles de energía desplazados cambia, mientras que los estados de todos los átomos no lo hacen.

«Hemos establecido más qubits en diferentes superposiciones cuánticas precisas al mismo tiempo que en cualquier sistema experimental anterior», dice Weiss. Los científicos también diseñaron su sistema para ser muy insensible a los detalles exactos de las alineaciones o a la potencia de los haces de luz utilizados, lo cual dice Weiss que es una buena cosa porque «no conviene depender de la intensidad exacta de la luz o de la alineación concreta».

Una de las maneras en que los científicos demostraron su capacidad para cambiar el estado cuántico de los átomos individuales fue cambiando los estados de átomos seleccionados en tres de los planos apilados dentro de la matriz cúbica con el fin de dibujar las letras P, S y U -las letras que representan a la Universidad Estatal de Pensilvania en inglés-.

«Cambiamos la superposición cuántica de los átomos de PSU para que fuera diferente de la superposición cuántica de los otros átomos de la matriz», dice Weiss. «Tenemos un sistema de fidelidad bastante alta. Podemos hacer selecciones específicas con una fiabilidad del 99,7%, y tenemos un plan para hacer que llegue al 99,99%.»

Entre los objetivos que Weiss tiene para la investigación futura de su equipo es conseguir que los qubits «tengan funciones de onda cuántica entrelazadas en las que el estado de una partícula esté implícitamente correlacionado con el estado de las otras partículas a su alrededor.»

Weiss dice que esta conexión entrelazada entre qubits es un elemento crítico necesario para la computación cuántica, y espera que el desarrollo de las técnicas mostradas en el prototipo de su equipo permitirá finalmente a su laboratorio llevar a cabo operaciones de entrelazamiento de alta calidad para la computación cuántica.

«Llenar el cubo con exactamente un átomo por sitio y crear entrelazamientos entre los átomos en cualquiera de los sitios que elegimos son algunos de nuestros objetivos de investigación a más corto plazo», dice Weiss.

Referencia bibliográfica:

Y. Wang, A. Kumar, T.-Y. Wu, D. S. Weiss: Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science (2016). DOI: 10.1126/science.aaf2581.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren cómo Plutón consiguió su corazón 16 abril, 2024
    El misterio de cómo Plutón consiguió una característica gigante en forma de corazón en su superficie finalmente ha sido resuelto: los científicos lograron reproducir con éxito la forma inusual con simulaciones numéricas, atribuyéndola a un impacto gigante y lento en ángulo oblicuo. Se trató de una colisión con un cuerpo planetario de unos 700 kilómetros […]
    Pablo Javier Piacente
  • La vida podría existir desde los inicios del Universo 16 abril, 2024
    El físico Avi Loeb sostiene en un reciente artículo que los elementos para el desarrollo de la vida tal como la conocemos podrían estar presentes en el cosmos desde la formación de las primeras estrellas, unos 100 millones de años después del Big Bang. También postula que esta hipótesis podría comprobarse si la misión Dragonfly […]
    Pablo Javier Piacente
  • Crean un acelerador de partículas en miniatura con aplicaciones médicas 16 abril, 2024
    Investigadores alemanes han desarrollado un acelerador de electrones que mide poco menos de medio milímetro de largo y 0,2 micrómetros de ancho, es decir, menos de una milésima de milímetro. Tiene aplicaciones en la investigación básica y permitirá crear nuevas herramientas de radioterapia. Entrevista con sus protagonistas, Peter Hommelhoff y Stefanie Kraus.
    Oscar William Murzewitz (Welt der Physik)/T21
  • Revelan la primera molécula fractal en la naturaleza 15 abril, 2024
    Los científicos han descubierto una molécula en la naturaleza que sigue un patrón geométrico de autosimilitud, conocido como fractal. La enzima microbiana denominada citrato sintasa es la primera estructura fractal molecular ensamblada directamente en la naturaleza que ha logrado identificarse hasta el momento. Los especialistas creen que este fractal puede representar un accidente evolutivo.
    Pablo Javier Piacente
  • El cambio climático podría estar relacionado con el aumento de los accidentes cerebrovasculares 15 abril, 2024
    Una nueva investigación ha demostrado que el número de muertes ligadas a accidentes cerebrovasculares y otras patologías relacionadas ha ido creciendo desde 1990, a la par del aumento de las temperaturas extremas. Durante 2019, el último año analizado, más de 500.000 muertes por accidentes cerebrovasculares se vincularon con temperaturas "no óptimas", provocadas por el calentamiento […]
    Pablo Javier Piacente
  • La globalización está fracturando a la humanidad 15 abril, 2024
    La globalización no está conduciendo a una civilización universal con valores compartidos, sino que está creando una brecha creciente entre los países occidentales de altos ingresos y el resto del mundo, en cuanto a valores como la tolerancia, la diversidad y la libertad.
    Eduardo Martínez de la Fe
  • En el caso de los caracoles, el huevo fue lo primero 14 abril, 2024
    Un caracol marino que primero fue ovíparo y evolucionó hacia la viviparidad revela que los saltos evolutivos ocurren gradualmente, a través de una serie de pequeños cambios.
    Redacción T21
  • Revelan el misterio del árbol tropical que camina 13 abril, 2024
    La denominada "palma caminante" o Socratea exorrhiza es un árbol de América Central y del Sur que según distintas versiones podría "caminar" y erguirse en determinadas situaciones: ahora, este mito parece haber sido resuelto bajo criterios científicos. Según los investigadores, aunque el árbol puede crecer rápidamente y crear nuevas raíces para lidiar con la pérdida […]
    Pablo Javier Piacente
  • Descubren 50 especies desconocidas para la ciencia en la exótica Isla de Pascua 12 abril, 2024
    Una expedición a la Cordillera de Salas y Gómez, frente a Rapa Nui, en el Océano Pacífico, documentó 160 especies animales que no se sabía que habitaban esta región de la misteriosa Isla de Pascua, en Chile. Además, descubrieron 50 criaturas que son absolutamente nuevas para la ciencia.
    Pablo Javier Piacente
  • El clima espacial podría generar un caos satelital sin precedentes 12 abril, 2024
    Los satélites en órbita terrestre baja (LEO) pueden perder su brújula cuando el clima espacial ofrece situaciones inesperadas. El problema afecta a la Estación Espacial Internacional, la estación espacial Tiangong de China y muchos satélites de observación de la Tierra. Los expertos sostienen que esta incertidumbre de posicionamiento aumenta el riesgo de colisiones orbitales peligrosas, […]
    Pablo Javier Piacente