Tendencias21
Javier Carrera: nuestra tecnología posibilita antibióticos más efectivos y nuevos tratamientos para la pandemia

Javier Carrera: nuestra tecnología posibilita antibióticos más efectivos y nuevos tratamientos para la pandemia

El científico-ingeniero español Javier Carrera es uno de los artífices del primer motor tecnológico capaz de integrar y simular todo el conocimiento acumulado durante décadas en la bacteria mejor estudiada en biológica molecular, un desarrollo que abre paso al diseño de antibióticos más efectivos y a nuevos tratamientos ante la pandemia, según explica en la siguiente entrevista.

Javier Carrera es un científico-ingeniero español especializado en biología sintética. Trabaja en el diseño de modelos computacionales que simulan la compleja biología de los microrganismos.

La revista Science publica hoy un artículo suyo en el que anuncia la creación del primer motor tecnológico capaz de integrar y simular todo el conocimiento acumulado durante décadas en Escherichia coli, la bacteria mejor estudiada en biológica molecular.

Este desarrollo, que incorpora bases similares de software a las usadas en Google Maps, tendrá profundas implicaciones en medicina proactiva y biotecnológica. En 2017 esta innovación le mereció a Javier Carrera la nominación al Innovator Under 35, la lista anual que reconoce a innovadores sobresalientes menores de 35 años elaborada por la MIT Technology Review.

¿En qué consiste la base tecnológica del primer motor capaz de integrar y simular todo el conocimiento acumulado durante décadas en Escherichia coli?

Hemos construido un modelo computacional que integra la mayor parte de los mecanismos biológicos conocidos hoy en día (que han sido proporcionados gracias a varias décadas de experimentos en la biología molecular de E. coli) mediante modelos matemáticos. Estos mecanismos biológicos son las pequeñas piezas del puzzle que representan el funcionamiento y modo de operación de E. coli dependiendo de las condiciones ambientales en las que vive: como ejemplos, señalaría nuestro microbioma, o simplemente medios de cultivo estándares usados en laboratorio.

Mediante esta tecnología, primero simulamos cómo cada gen de la bacteria induce ciertas funciones biológicas en ciertos momentos del ciclo celular; en segundo lugar, podemos cuantificar todos los componentes intra-moleculares en tiempo real (ADN, RNA, proteínas, moléculas derivadas del metabolismo, maquinaria celular como ribosomas o polimerasas – entre otros); y en tercer lugar podemos observar cómo ellos interactúan de una manera sincronizada. Todo ello con la finalidad de capacitar a los bio-ingenieros para optimizar y entender la biología de los microorganismos relacionados con la medicina o la biotecnología industrial.

 ¿Cómo se llega a un resultado así en tu carrera profesional?

Estudié ingeniería mecánica en España/Suecia (2006). Seguidamente, mis estudios de tesis fueron entre Valencia y Paris (2012), focalizados en el área de biología sintética (en el nexo de ingeniería y biología molecular), con el objetivo de diseñar modelos computacionales que pudieran servir para entender y simular la compleja biología que gobierna el funcionamiento de los microrganismos. Durante esta etapa tuve la oportunidad de trabajar con pioneros del campo en el MIT, lo que despertó mi interés por aterrizar en el sistema académico americano. Mi faceta en Stanford (2017) me ayudó a consolidar trabajos arrancados durante mi tesis, en colaboración con un equipo de ingenieros, biólogos moleculares, y científicos. Fruto de esa colaboración emergió lo que a día de hoy llamamos “whole-cell model”, el primer motor tecnológico capaz de integrar y simular todo el conocimiento acumulado durante décadas en Escherichia coli, la bacteria mejor estudiada en biológica molecular, con profundas implicaciones hacia una medicina proactiva y una biotecnología basada en ciclos rápidos de Design-Build-Test-Learn. Ese avance tecnológico apoyó mi nominación en 2017 al “Innovator Under 35”, otorgado por la MIT Technology Review. Finalmente, esta tecnología ha sido seleccionada por Science para describir casi una década de investigación en Stanford, respaldada en ejecución por uno de los primeros ingenieros clave de Google Maps. 

¿Qué relación tiene vuestro desarrollo con la tecnología de Google Maps?

 Debo aclarar que no hemos usado ninguna tecnología de Google. En concreto, Jerry Morrison (incluido en la lista de autores) se unió al proyecto en 2015. Es uno de los ex-ingenieros pioneros de Google Maps que, incentivado por este proyecto ambicioso, se reincorporó al mundo académico y se unió a nuestro equipo en Stanford. Como experto en desarrollar tecnologías con impacto a millones de usuarios (como Maps), Morrison incorporó grandes dosis de buenas prácticas en ingeniería de software para generar una arquitectura computacional que ayudara a lanzar simulaciones que son masivas en cuanto a los recursos (computacionales) necesarios para ser ejecutadas.

Este desarrollo tecnológico, ¿puede facilitar una nueva generación de antibióticos mediante computación? ¿Impactará también otras ingenierías?

Uno de los principales objetivos de esta tecnología ha sido facilitar la simulación del funcionamiento de antibióticos para mejorar su eficiencia y luchar contra bacterias patogénicas con resistencia a los antibióticos clásicos. Esta tecnología abre las puertas a poder diseñar antibióticos más efectivos suplementándolos con moléculas que incentivan su eficiencia, e incluso explorando combinaciones de antibióticos actualmente presentes en mercado.

Hay que tener en cuenta al respecto que el mercado de los antibióticos no ha sido sostenible y que ha derivado en un colapso masivo durante los últimos tiempos en los departamentos de antimicrobiales de las grandes farmacéuticas (por ejemplo, Novartis-Emeryville en 2018). Es un mercado con incentivos débiles: costes elevados para producir nuevos antibióticos, fundamentalmente debido a fases de desarrollo y ensayos clínicos que sobrepasan los 10 años en muchos casos. Además, generan beneficios muy reducidos cuando nuevos fármacos son sacados a fases comerciales. Nuevas tecnologías para acelerar el proceso efectivo de R&D son necesarios con máxima urgencia en este sector: se estima que en las próximas 2-3 décadas, la tasa de mortalidad asociada a infecciones bacterianas superará a la que asociamos a enfermedades puramente relacionadas con cáncer, debido a que las bacterias están adquiriendo resistencia los antibióticos actuales. Los gobiernos y las industrias farmacéuticas no han activado planes para abordar este gran problema de la resistencia a antibióticos.

Respecto a otras disciplinas científico-tecnológicas plenamente consolidadas (como la ingeniería mecánica o electrónica), se necesitan plataformas de simulaciones que capaciten a los bioingenieros el modelado de cómo funcionarían nuevas terapias, sin necesidad inmediata de ejecutar experimentos (con costes elevados) para seleccionar las terapias “más prometedoras». Esta tecnología publicada ahora en Science activa el paradigma de experimentación en biología molecular guiado por simulaciones computacionales, abriendo puertas a una nueva era en la que la biología de sistemas ya acaba de demostrar que facilita diseños más efectivos.

ART: ERIK JACOBSEN; PHOTO: BERNARD ANDRE.

¿Cómo una plataforma de integración de conocimiento y simulación puede acelerar el descubrimiento de fármacos efectivos para luchar contra la actual pandemia?

Es de relevancia resaltar la cercanía entre los problemas que experimentamos actualmente para encontrar vacunas/fármacos efectivos contra COVID-19 y esta nueva metodología para simular biología y acelerar descubrimientos. Actualmente, estamos experimentando una generación masiva de datos con relación a SARS-CoV-2 para aprender rápidamente cómo este virus patogénico interactúa y progresa con seres humanos a distintas escalas (en tiempo y a nivel molecular). Es uno de esos momentos críticos en la historia de la medicina, en el que deberíamos reconocer que es clave centralizar y coordinar la interrogación científico-experimental (como Francis Crick, premio Nobel al descubrimiento estructural del ADN, ya defendió en uno de sus monográficos hace cuatro década) y posterior agregación de datos/conocimiento para luchar contra esta enfermedad que nos ha traído consecuencias sin precedentes. En este contexto, esta tecnología ha sido pionera para integrar todo el conocimiento generado en la biologia de E. coli durante más de cuatro décadas, a lo largo de centenares de laboratorios en el mundo, millones de experimentos, y billones de datos, con el objetivo de identificar cuál sería el siguiente experimento que nos capacitaría para descubrir otro pequeño rincón desconocido del funcionamiento complejo de sistemas biológicos, algo que es indiscutiblemente necesario en tiempos de pandemia para traer fármacos a la mesa lo antes posible. Todo segundo cuenta, todo experimento ha de ser para descubrir algo nuevo, y nuevos datos adquiridos deben solo aportar más piezas del puzzle de una manera estratégica y coordinada.

¿Cómo ha sido el proceso que ha convertido este desarrollo tecnológico en un éxito también empresarial?

Es hacia mitad del 2012 cuando personalmente descubro que un laboratorio de Stanford está desarrollando una tecnología emergente con la que yo había soñado durante mis estudios de doctorado (2007-2012): ordenadores capaces de simular toda la biología que se conoce de una bacteria. Considero sustanciales los avances que logramos en aquellos tiempos de tesis, pero mis avances de entonces distaban mucho de ser un motor útil en el mundo no-académico. Finalmente, me uno a este proyecto en 2013, aterrizando en uno de los ecosistemas más innovadores, Silicon Valley. Ya unido al proyecto, empezamos a observar que los tiempos de desarrollo tecnológico superan sustancialmente los plazos que habíamos programado. En 2015 decido aparcar por unos meses el desarrollo tecnológico (continuado por el resto del equipo) y acercarme al mundo de la industria mediante un “short MBA” en la escuela de negocios de Stanford. En retrospectiva, pienso que fue clave poder inyectar dosis de “customer discovery” para girar ligeramente el enfoque tecnológico-científico inicialmente diseñado, ofrecido únicamente a laboratorios puramente académicos. Hoy en día, ya hablamos de algo con un impacto mucho mayor: grandes tecnológicas de Silicon Valley ya han negociado con la Universidad la adquisición de la licencia que respalda este nuevo motor tecnológico para uso no-académico. Finalmente, remarcaría el hecho de que este motor tecnológico no necesariamente hubiera escalado más rápido con recursos financieros en sus inicios. Más bien, considero que es el resultado de una sólida alineación entre incentivos dictados por mercados en biotecnología/medicina explotados eficientemente por líderes en ingeniería y biología molecular (mis mentores en Stanford). Esa sí que resulta una de las grandes limitaciones impuestas fuera del ecosistema único que ofrece Silicon Valley.

Referencia

Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation. Javier Carrera et al. Science  24 Jul. 2020:Vol. 369, Issue 6502, eaav3751. DOI: 10.1126/science.aav3751

Eduardo Martínez de la Fe

Eduardo Martínez de la Fe, periodista científico, es el Editor de Tendencias21.

1 comentario

RSS Lo último de Tendencias21

  • Descubren neuronas "zombis" en el cerebro, que serían claves en el proceso de aprendizaje 9 abril, 2024
    Las neuronas "zombis" son unidades vivas pero funcionalmente alteradas, que parecen "dormidas" en determinadas situaciones: los investigadores han revelado que cumplen un papel fundamental en el cerebelo, concretamente en aspectos relativos a la forma en la cual aprendemos.
    Pablo Javier Piacente
  • La Luna se invirtió por completo hace más de 4 mil millones de años 9 abril, 2024
    Hace unos 4.220 millones de años, poco después de que la Luna se formara a partir de un trozo de la Tierra que se desprendió durante una colisión violenta a principios de la historia del Sistema Solar, nuestro satélite se dio vuelta y comenzó así una etapa clave de su desarrollo. Así lo ha comprobado […]
    Pablo Javier Piacente
  • Arte rupestre de hace 2.000 años podría representar música psicodélica 9 abril, 2024
    Aunque la música psicodélica moderna no nació hasta la década de 1960, las influencias psicodélicas se pueden encontrar en el arte rupestre de hace miles de años. Grabados precolombinos en piedra, de 2.000 años de antigüedad, reflejan figuras humanas bailando en estado de trance chamánico.
    Redacción T21
  • Descubren antiguas partículas de polvo espacial provenientes de otro sistema estelar 8 abril, 2024
    Los astrónomos han descubierto una rara partícula de polvo atrapada en un antiguo meteorito extraterrestre, que fue formado por una estrella distinta a nuestro Sol. El polvo se habría originado luego de una supernova: las partículas son como "cápsulas del tiempo celestes" y proporcionan una instantánea de la vida de su estrella madre.
    Pablo Javier Piacente
  • Un lejano mundo deja ver una increíble explosión de luz en sus cielos "metálicos" 8 abril, 2024
    Utilizando datos del Telescopio Espacial CHEOPS de la Agencia Espacial Europea (ESA), cuyo centro de operaciones científicas se localiza en la Universidad de Ginebra, en Suiza, un equipo internacional de científicos logró detectar por primera vez un extraño fenómeno lumínico denominado “gloria” en un exoplaneta: el estallido de luz se apreció en WASP-76b, un mundo […]
    Pablo Javier Piacente
  • El ordenador cuántico desembarca en el mundo universitario 8 abril, 2024
    La última computadora cuántica System One de IBM se ha instalado en el Instituto Politécnico Rensselaer (RPI) en Nueva York. Es la primera máquina cuántica de IBM instalada en un campus universitario de Estados Unidos. Una revolución en el mundo académico que impulsa la formación de un ecosistema cuántico global.
    Eduardo Martínez de la Fe
  • Los cocodrilos imitan a las ballenas antes de aparearse 7 abril, 2024
    Los cocodrilos cortejan a las hembras lanzando un chorro de agua al aire, tal como hacen las ballenas cuando salen a la superficie. A ellas les encantan también los silbidos y las burbujas que les dedican sus parejas antes de aparearse. Se está elaborando un diccionario de cocodrilos.
    Redacción T21
  • Los drones policiales se implantan en Estados Unidos 6 abril, 2024
    Chula Vista, un suburbio de San Diego, California, con una población de 275.000 habitantes, es una de las pocas ciudades estadounidenses que utiliza sistemáticamente drones para ayudar a la policía en caso de emergencia. En activo desde 2018, el sistema está sirviendo de referencia a otros Estados y tal vez otros países.
    Redacción T21
  • Existen cuatro formas diferentes de sueño y cada una deja su huella 5 abril, 2024
    Un nuevo estudio ha identificado cuatro tipos distintos de "soñadores" para entender mejor el complejo problema del sueño, y explica cómo cada una de estas variedades pueden afectar el bienestar y la calidad de vida a largo plazo.
    Pablo Javier Piacente
  • Los agujeros negros pueden devorar a las estrellas desde su interior 5 abril, 2024
    Algunas estrellas pueden estar "infectadas" con agujeros negros que las destruyen desde adentro, según sugiere un nuevo estudio. De confirmarse esta hipótesis, significaría que la materia oscura estar hecha de pequeños agujeros negros "devoradores de estrellas", que se formaron en el Universo temprano.
    Pablo Javier Piacente