Tendencias21
La dirección del tiempo se vuelve confusa a escala de una sola molécula

La dirección del tiempo se vuelve confusa a escala de una sola molécula

La dirección del tiempo se vuelve confusa e indefinida a escala de una sola molécula, según una nueva investigación que ha analizado el flujo del tiempo en procesos en los que la entropía no es continua. Esta investigación ha determinado que, aunque la entropía general se incremente como media a nivel microscópico, esto no sucede así en cada uno de los momentos del experimento, es decir, que no siempre el tiempo tiene una dirección definida: del pasado al presente, del presente al futuro. Por Yaiza Martínez.

La dirección del tiempo se vuelve confusa a escala de una sola molécula

El concepto de tiempo es para nosotros muy intuitivo, y fácilmente distinguimos el pasado del presente o del futuro. No ha sido tan sencillo para los pensadores. En la Edad Antigua ya encontramos las primeras reflexiones humanas sobre el tiempo. Platón, por ejemplo, decía que el tiempo es la imagen móvil de la eternidad. Posteriormente, Newton lo describió como algo absoluto, verdadero y matemático, que transcurre uniformemente. En los años veinte del siglo pasado, Einstein llegó a considerarlo como una mera ilusión.

Estas ideas reflejan la inmensa complejidad que supone el tiempo, tema que ha sido objeto de reflexión para muchos filósofos y de investigación para muchos científicos. Son precisamente los científicos los que, ahora, tratan de solventar el hecho de que la ciencia aún no proporcione una definición clara de lo que es el tiempo.

Edward Feng, ingeniero químico de la Universidad de California en Berkeley, y Gavin Crooks, físico del Lawrence Berkeley National Laboratory explican en un artículo aparecido en la revista Physical Review Letters que “las teorías fundamentales de la física –la mecánica clásica, la electrodinámica, la mecánica cuántica, la relatividad general, etc.- son simétricas al respecto de la inversión del tiempo”(esto es, que el pasado, el presente y el futuro no difieren para ellas).

Según Crooks y Feng, “la única teoría científica fundamental que marca una dirección preferente para el tiempo es la de la segunda ley de la termodinámica, que asevera que la entropía del Universo aumenta a medida que el tiempo fluye hacia el futuro (la entropía es la cantidad de energía no disponible de un sistema)”.

Procesos sin vuelta atrás

Esta explicación proporciona una orientación, una flecha del tiempo. Nuestra percepción de éste sería, por tanto, una consecuencia directa de la flecha temporal termodinámica.

A grandes rasgos, la termodinámica es una rama de la física que estudia los efectos de la temperatura, presión y volumen de los sistemas físicos a un nivel macroscópico. La cantidad de entropía de cualquier sistema aislado termodinámicamente tiende a aumentar con el tiempo. Por ejemplo, una gota de tinta dispersada en el agua no dará «marcha atrás» en su movimiento y no volverá a recogerse en su volumen inicial.

En definitiva, el tiempo tiene para esta ley una orientación definida. Según los científicos, que la entropía del universo aumente con el tiempo supone que existe una dirección, una flecha del tiempo, una asimetría temporal (que permite distinguir el pasado del futuro: la gota de tinta en su volumen inicial y la gota de tinta dispersada en agua) que se corresponde con nuestra propia percepción del tiempo.

Entropía a nivel microscópico

Esto está claro a nivel macroscópico. Tal y como ejemplariza la revista Physorg.com, cuando se derrama un vaso de leche, la asimetría temporal es obvia para cualquier observador: primero el vaso estaba lleno de leche y después vacío.

Sin embargo, a escala microscópica, dado que la cantidad de energía implicada en los procesos es tan pequeña, resulta más difícil afirmar que la entropía está aumentando, y que por lo tanto el tiempo se mueve “hacia delante” (hacia el futuro), en lugar de hacia atrás (hacia el pasado).

Feng y Crooks afirman haber creado un método para medir con exactitud la asimetría temporal de lo microscópico. De hecho han comprobado que, a escala microscópica y durante algunos intervalos, la entropía puede disminuir realmente. Y que, aunque la entropía general se incremente como media, en cada uno de los momentos del experimento esto no sucede, es decir, que no siempre el tiempo tiene una dirección clara: del pasado al presente, del presente al futuro.

Para estudiar el tiempo a escala minúscula, los científicos empezaron investigando el incremento de la disipación de energía (entropía) en diversas distribuciones. Y descubrieron que, durante algunos intervalos, la entropía realmente se reducía.

Incluso aunque existiese un aumento medio de la entropía, la dirección del tiempo no resultó evidente en cada momento del experimento, es decir, que la asimetría temporal no estaba asegurada, sino que algunas disposiciones presentaron un tiempo simétrico (que no diferencia el presente del pasado o el futuro). «Mientras el tiempo avanza descaradamente en el mundo macroscópico, la dirección del tiempo se vuelve confusa a escala de una única molécula», resumió Feng.

Posibles aplicaciones

Además del interés teórico que sin duda tiene esta investigación, el método ideado por Feng y Crooks podría tener otras aplicaciones, como calcular las diferencias de energía libre en experimentos con sistemas alejados del equilibrio.

Los científicos explican que comprender la relación entre la asimetría temporal y la entropía también resultaría crucial para el desarrollo de futuras máquinas moleculares. «Nuestra definición resalta esta peculiaridad. Esperamos que esto sirva a los científicos a la hora de estudiar moléculas biológicas”, señala Feng.

Yaiza Martinez

Hacer un comentario

RSS Lo último de Tendencias21

  • Las hormigas invasoras hacen autostop para encontrar un nuevo hogar 28 junio, 2024
    Se sabe que los insectos son especialistas en utilizar todo tipo de formas de transporte para atravesar amplias distancias, pero un nuevo estudio ha revelado que las hormigas también dominan el autostop: estos insectos sociales recogen a toda la familia, incluida su reina, y se suben al primer vehículo que encuentran para emprender un viaje […]
    Pablo Javier Piacente
  • Los recuerdos imborrables se adhieren a algunas neuronas 28 junio, 2024
    Los científicos han descubierto una explicación biológica para los recuerdos a largo plazo, esos que acompañan a una persona prácticamente durante toda la vida. Revelaron que una molécula, KIBRA, sirve como “pegamento” para otras moléculas, consolidando así la formación de la memoria al activar y mantener una etiqueta sináptica persistente, que queda adherida a un […]
    Pablo Javier Piacente
  • Descubren un boquete de seguridad que afecta a todos los dispositivos y conexiones a Internet 28 junio, 2024
    Una vulnerabilidad de seguridad, que afecta a todas las conexiones y dispositivos de Internet, puede eludir firewalls, VPN y otras herramientas de seguridad y permite espiar a cualquier persona, sin necesidad de código malicioso o acceso al dispositivo. No existe una manera fácil de solucionar este problema de seguridad.
    Redacción T21
  • Crean bebés digitales para mejorar la atención sanitaria 27 junio, 2024
    Un equipo de investigadores desarrolló modelos informáticos que simulan los procesos metabólicos únicos de cada bebé: los “gemelos digitales” pueden ayudar a comprender mejor las enfermedades metabólicas raras y otros desafíos que enfrentan los bebés humanos durante los primeros 6 meses de vida, que son críticos para su crecimiento posterior.
    Pablo Javier Piacente
  • La similitud de los vientos espaciales con los de la Tierra 27 junio, 2024
    Los científicos han descubierto corrientes en el espacio que reflejan de manera inquietante los vientos que giran cerca de la superficie de la Tierra, lo que sugiere fuerzas ocultas que los conectan. Este nuevo conocimiento podría proporcionarnos una mejor comprensión de los sistemas ambientales que circulan alrededor del globo y mejorar los pronósticos meteorológicos espaciales […]
    Pablo Javier Piacente
  • Los archivos geológicos anticipan nuestro futuro climático 27 junio, 2024
    Hace 56 millones de años, la erosión del suelo se cuadruplicó en el planeta debido a las fuertes lluvias y las inundaciones de los ríos provocadas por un calentamiento global muy similar al que conocemos hoy.
    Eduardo Martínez de la Fe
  • Ya es posible transmitir el tacto a través de Internet 26 junio, 2024
    Un nuevo estándar para la compresión y transmisión del sentido del tacto mediante Internet sienta las bases para la telecirugía, la teleconducción y nuevas experiencias de juego en línea, entre otras aplicaciones. El flamante estándar HCTI (Haptic Codecs for the Tactile Internet) es para el “tacto digital” lo que son JPEG, MP3 y MPEG para […]
    Pablo Javier Piacente
  • Las primeras muestras de la cara oculta de la Luna ya están en la Tierra 26 junio, 2024
    La cápsula de reingreso de la sonda Chang'e-6 de China, que transporta hasta dos kilogramos de materiales extraídos y perforados de la cuenca más antigua de la Luna ubicada en su lado oscuro, aterrizó este martes 25 de junio en la región de Mongolia Interior y fue rápidamente recuperada, según informó la Administración Nacional del […]
    Pablo Javier Piacente
  • La Tierra tendrá dos soles dentro de 1,3 millones de años y durante 60.000 años 26 junio, 2024
    Dentro de 1,3 millones de años, la Tierra tendrá una especie de segundo sol porque la estrella Gliese 710 se acercará a 1,1 años luz de la Tierra y la veríamos del mismo tamaño que Júpiter. Lo malo es que esa alteración cósmica puede provocar un episodio en nuestro planeta como el que acabó con […]
    Eduardo Martínez de la Fe
  • China descubre grafeno natural en la Luna 25 junio, 2024
    Investigadores chinos han descubierto recientemente grafeno natural de escasas capas por primera vez en la Luna, a partir de las muestras traídas a la Tierra por la sonda Chang'e 5. El hallazgo proporciona nuevos conocimientos sobre las actividades geológicas, la historia evolutiva y las características ambientales de la Luna.
    Pablo Javier Piacente