Tendencias21

Nuestro cerebro tiene tanta capacidad de memoria como todo Internet

Científicos de EE.UU. han determinado, midiendo con precisión el tamaño de las sinapsis neuronales, que la capacidad de memoria del cerebro es 10 veces mayor de lo que se creía, y está en niveles de petabyte, es decir, Internet entera. El descubrimiento podría abrir la vía de supercomputadores precisos y de bajo consumo.

Nuestro cerebro tiene tanta capacidad de memoria como todo Internet

Investigadores y colaboradores del Instituto Salk de Estudios Biológicos (La Jolla, California, EE.UU.) han realizado una observación crucial sobre el tamaño de las conexiones neuronales, y calculan que la capacidad de memoria del cerebro es mucho mayor de lo que se suele estimar.

El nuevo trabajo también responde a una vieja pregunta sobre cómo puede ser el cerebro tan eficiente energéticamente, y podría ayudar a los ingenieros a construir ordenadores increíblemente potentes, pero que también conserven la energía.

Terry Sejnowski, profesor de Salk y co-autor principal del artículo publicado en eLife, afirma: «Hemos descubierto la clave para descubrir el principio de diseño de cómo funcionan las neuronas del hipocampo con baja energía, pero con una alta potencia de cómputo. Nuestras nuevas mediciones de la capacidad de memoria del cerebro aumentan las estimaciones conservadoras por un factor de 10 hasta por lo menos un petabyte, al nivel de la World Wide Web.»

Nuestros recuerdos y pensamientos son el resultado de patrones de actividad eléctrica y química en el cerebro. Una parte fundamental de la actividad se produce cuando las neuronas interactúan en ciertos cruces, conocidas como sinapsis. Un cable de salida (un axón) de una neurona se conecta a un cable de entrada (una dendrita) de una segunda neurona.

Las señales viajan a través de la sinapsis en forma de productos químicos llamados neurotransmisores, para contar a la neurona receptora si debe transmitir una señal eléctrica a otras neuronas. Cada neurona puede tener miles de estas sinapsis con miles de otras neuronas.

«La primera vez que reconstruimos cada dendrita, axón, proceso glial y sinapsis de un volumen de hipocampo del tamaño de un solo glóbulo rojo, nos desconcertó un poco la complejidad y la diversidad de las sinapsis», dice Kristen Harris, co-autora principal del trabajo y profesora de neurociencia en la Universidad de Texas (Austin), en la web del Instituto. «Aunque esperaba aprender los principios fundamentales de cómo se organiza el cerebro, me sorprendió de verdad la precisión obtenida en los análisis.»

Sinapsis

Las sinapsis son todavía un misterio, a pesar de que su disfunción puede causar una serie de enfermedades neurológicas. Las sinapsis más grandes -con más superficie y con vesículas de neurotransmisores más grandes- son más fuertes, lo que las hace más propensas a activar las neuronas circundantes que las sinapsis medianas o pequeñas.

El equipo de Salk, mientras reconstruía en 3D tejido de hipocampo (el centro de memoria del cerebro) de rata, notó algo inusual. En algunos casos, un solo axón de una neurona formaba dos sinapsis para llegar a una sola dendrita de una segunda neurona, lo que significa que la primera neurona parecía estar enviando un mensaje duplicado a la neurona receptora.

En un primer momento, los investigadores no pensaron mucho sobre esta duplicidad, que se produce alrededor del 10 por ciento del tiempo en el hipocampo. Pero Tom Bartol, uno de los miembros de Salk, tuvo una idea: si podían medir la diferencia entre dos sinapsis muy similares como esas, podían hacerse una idea mejor del tamaño de las sinapsis, que hasta ahora sólo habían sido clasificadas en como pequeñas, medianas y grandes.

Para ello, los investigadores utilizaron microscopía avanzada y algoritmos computacionales que habían desarrollado para obtener imágenes de cerebros de ratas y reconstruir la conectividad, las formas, los volúmenes y la superficie del tejido cerebral hasta un nivel nanomolecular.

Los científicos esperaban que las sinapsis fueran más o menos similares en tamaño, pero se sorprendieron al descubrir que las sinapsis eran casi idénticas.

«Nos quedamos sorprendidos de encontrar que la diferencia en los tamaños de los pares de sinapsis eran muy pequeñas, en promedio sólo del ocho por ciento. Nadie pensó que fuera tan pequeña», dice Bartol.

Debido a que la capacidad de memoria de las neuronas depende del tamaño de la sinapsis, esta diferencia del ocho por ciento resultó ser un número de clave que el equipo pudo entonces introducir en sus modelos algorítmicos del cerebro, para medir la cantidad de información que potencialmente podría ser almacenada en las conexiones sinápticas.

En términos informáticos

Se sabía que el rango de tamaños de las sinapsis era de 60 a 1 y que la mayoría eran pequeñas. Pero con el conocimiento de que las sinapsis de todos los tamaños pueden variar en márgenes tan pequeños como un ocho por ciento, el equipo determinó que podría haber cerca de 26 categorías de tamaños de las sinapsis, en lugar de sólo unas pocas.

«Nuestros datos sugieren que hay 10 veces más tamaños discretos de sinapsis de lo que se pensaba», dice Bartol. En términos informáticos, 26 tamaños de sinapsis corresponden a alrededor de 4,7 «bits» de información. Anteriormente, se pensaba que el cerebro era capaz de tener sólo uno o dos bits para el almacenamiento de memoria a corto y largo plazo en el hipocampo.

«Esto es aproximadamente un orden de magnitud más de precisión de lo que nadie hubiera imaginado», dice Sejnowski.

Fiabilidad

Lo que hace esta precisión desconcertante es que las sinapsis del hipocampo son notoriamente poco fiables. Cuando una señal se desplaza de una neurona a otra, por lo general activa esa segunda neurona sólo el 10 al 20 por ciento de las veces.

«A menudo nos habíamos preguntado cómo podía salir la notable precisión del cerebro de estas sinapsis no confiables», dice Bartol. Una respuesta, según el estudio, es que las sinapsis ajustan su tamaño de forma constante, según las señales que reciben.

Consumo

Los resultados también ofrecen una explicación de la eficiencia sorprendente del cerebro. El cerebro adulto al despertar genera sólo 20 vatios de corriente continua, tanto como una bombilla de luz muy tenue. El descubrimiento podría ayudar a los informáticos a construir ordenadores ultraprecisos de bajo consumo, en particular los que emplean «aprendizaje profundo» y redes de técnicas neuronales artificiales capaces de aprendizaje y análisis sofisticados, como el habla, el reconocimiento de objetos y la traducción.

Según Sejnowski, el «uso de transmisiones probabilísticas resulta ser muy preciso y requiere mucha menos energía tanto para ordenadores como para el cerebro.»

Referencia bibliográfica:

Terrence J Sejnowski et al.: Nanoconnectomic upper bound on the variability of synaptic plasticity. eLife (2016) DOI: 10.7554/eLife.10778.001.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren 50 especies desconocidas para la ciencia en la exótica Isla de Pascua 12 abril, 2024
    Una expedición a la Cordillera de Salas y Gómez, frente a Rapa Nui, en el Océano Pacífico, documentó 160 especies animales que no se sabía que habitaban esta región de la misteriosa Isla de Pascua, en Chile. Además, descubrieron 50 criaturas que son absolutamente nuevas para la ciencia.
    Pablo Javier Piacente
  • El clima espacial podría generar un caos satelital sin precedentes 12 abril, 2024
    Los satélites en órbita terrestre baja (LEO) pueden perder su brújula cuando el clima espacial ofrece situaciones inesperadas. El problema afecta a la Estación Espacial Internacional, la estación espacial Tiangong de China y muchos satélites de observación de la Tierra. Los expertos sostienen que esta incertidumbre de posicionamiento aumenta el riesgo de colisiones orbitales peligrosas, […]
    Pablo Javier Piacente
  • La Inteligencia Artificial puede ser envenenada para proteger los derechos de autor 12 abril, 2024
    Una herramienta llamada Nightshade cambia imágenes digitales de manera casi imperceptible para el ojo humano, pero que se ven totalmente diferentes por los modelos de IA: una forma polémica de proteger las obras de arte de posibles infracciones de derechos de autor.
    Redacción T21
  • La acidez cerebral podría estar relacionada con múltiples trastornos neurológicos 11 abril, 2024
    Un estudio en animales a gran escala vincula los cambios en el pH del cerebro con problemas cognitivos de amplio alcance, ligados a patologías como el autismo o el Alzheimer, entre otras. Los científicos creen que los problemas metabólicos en el cerebro podrían estar directamente relacionados con una variedad de trastornos neuropsiquiátricos y neurodegenerativos.
    Pablo Javier Piacente
  • Cultivan organoides cerebrales con conexiones neuronales similares a las de un cerebro real 11 abril, 2024
    Un equipo internacional de investigadores ha desarrollado una técnica para conectar tejidos cultivados en laboratorio que imitan al cerebro humano de una manera que se asemeja a los circuitos neuronales del cerebro real. El "sistema" de mini cerebros interconectados podría revolucionar nuestra comprensión de las funciones cerebrales.
    Pablo Javier Piacente
  • Los Estados se exponen a condenas judiciales por inacción climática 11 abril, 2024
    Suiza es el primer Estado condenado judicialmente por no resolver el desafío climático y violar los derechos humanos de las personas mayores. Hace un año, 16 niños y jóvenes obtuvieron una sentencia condenatoria contra el Estado de Montana por destruir con sus leyes el medioambiente. Cualquier Estado puede ser denunciado si no preserva el ambiente en […]
    Eduardo Martínez de la Fe
  • Detectan extraños pulsos de radio procedentes de un magnetar que desconciertan a los científicos 10 abril, 2024
    Los astrónomos han detectado señales de radio inusuales procedentes de XTE J1810-197, un radiomagnetar o estrella de neutrones ultramagnética situada a 8.100 años luz de distancia de la Tierra, en la constelación de Sagitario. Los resultados son inesperados y sin precedentes: a diferencia de las señales de radio que se han detectado en otros magnetares, […]
    Pablo Javier Piacente
  • La IA podría ser el límite para todas las civilizaciones avanzadas en el Universo 10 abril, 2024
    Un nuevo estudio sugiere que el desarrollo de la Inteligencia Artificial (IA) hacia una Superinteligencia Artificial (ASI) podría explicar por qué no hemos detectado aún otras civilizaciones avanzadas en el cosmos, a pesar de la alta probabilidad de su existencia: en vez de supernovas, plagas, guerras nucleares o eventos climáticos extremos que hayan sido un […]
    Pablo Javier Piacente
  • Higgs ha podido dejar abierta la puerta a la Nueva Física con su legado 10 abril, 2024
    La muerte de Peter Higgs, que pasará a la historia como el descubridor del bosón que explica cómo se forma la materia, deja un legado en la historia de la física que todavía puede aportar algo más trascendente: la prueba definitiva de una Nueva Física más allá del Modelo Estándar.
    Eduardo Martínez de la Fe
  • Descubren neuronas "zombis" en el cerebro, que serían claves en el proceso de aprendizaje 9 abril, 2024
    Las neuronas "zombis" son unidades vivas pero funcionalmente alteradas, que parecen "dormidas" en determinadas situaciones: los investigadores han revelado que cumplen un papel fundamental en el cerebelo, concretamente en aspectos relativos a la forma en la cual aprendemos.
    Pablo Javier Piacente