Tendencias21

Predicen un nuevo tipo de partícula presente en ‘universos materiales’

Un equipo de investigadores de EE.UU., Suiza y China ha predicho la existencia de un nuevo tipo de partícula, llamada fermión de Weyl tipo II, en materiales metálicos de tungsteno, denominados ‘universos materiales’ por la gran variedad de partículas que presentan. Al ser sometidos a un campo magnético, los materiales que contienen la partícula actúan como aislantes para la corriente aplicada en algunas direcciones y como conductores si es aplicada en otras direcciones. Podría tener aplicaciones en dispositivos de baja energía y transistores eficientes.

Predicen un nuevo tipo de partícula presente en 'universos materiales'

Un equipo internacional de investigadores ha predicho la existencia de un nuevo tipo de partícula, llamada fermión de Weyl tipo II, en materiales metálicos. Al ser sometidos a un campo magnético, los materiales que contienen la partícula actúan como aislantes para la corriente aplicada en algunas direcciones y como conductores de corriente si es aplicada en otras direcciones.

Este comportamiento sugiere una gama de aplicaciones potenciales, desde dispositivos de baja energía a transistores eficientes.

Los investigadores teorizan que existe la partícula en un material conocido como ditelururo de tungsteno (WTe2), que los investigadores comparan a un «universo material» ya que contiene varias partículas, algunas de las cuales existen en las condiciones normales de nuestro universo y otras que puedan existir solamente en estos tipos especializados de cristales. La investigación aparece en la revista Nature esta semana.

La nueva partícula es un primo del fermión de Weyl, una de las partículas del modelo estándar. Sin embargo, las partículas de tipo II mismas exhiben respuestas muy diferentes a los campos electromagnéticos, siendo conductores casi perfectos cerca en algunas direcciones del campo y aislantes en otras.

La investigación fue dirigida por el profesor de la Universidad de Princeton (Nueva Jersey, EE.UU.) B. Andrei Bernevig, así como por Matthias Troyer y Alexey Soluyanov, de la Escuela Politécnica Federal de Zúrich (Suiza), y Xi Dai, del Instituto de Física de la Academia China de Ciencias.

La teoría

Según los investigadores, el físico Hermann Weyl no fue consciente de la existencia de esta partícula, durante el desarrollo inicial de la teoría cuántica hace 85 años, porque violaba una norma fundamental, llamada simetría de Lorentz, que no se produce en los materiales en que surge el nuevo tipo de fermión.

Las partículas de nuestro universo están descritas por la teoría cuántica de campos relativista, que combina la mecánica cuántica con la teoría de la relatividad de Einstein. Según esta teoría, los sólidos están hechos de átomos, que consisten en un núcleo rodeado de electrones. Debido a la gran cantidad de electrones que interactúan entre sí, no es posible resolver exactamente el problema del movimiento de muchos electrones en sólidos utilizando la teoría de la mecánica cuántica.

En cambio, nuestro conocimiento actual de los materiales se deriva de una perspectiva simplificada, en la cual los electrones en sólidos se describen en términos de partículas especiales que no interactúan, llamadas cuasi-partículas, que se mueven en el campo efectivo creado por entidades cargadas, llamadas iones y electrones. Estas cuasi-partículas, denominadas electrones Bloch, también son fermiones (tienen espín semi-entero).

Del mismo modo que los electrones son partículas elementales en nuestro universo, los electrones Bloch se pueden considerar las partículas elementales de un sólido. En otras palabras, el propio cristal se convierte en un «universo», con sus propias partículas elementales.

En los últimos años, los investigadores han descubierto que un «universo material» así puede albergar todas las demás partículas de la teoría cuántica de campos relativista. Tres de estas cuasi-partículas, los fermiones de Dirac, Majorana, y Weyl, fueron descubiertos en dichos materiales, a pesar de que los dos últimos habían sido esquivos durante los experimentos, abriendo el camino para simular ciertas predicciones de la teoría cuántica de campos en experimentos relativamente baratos y a escala pequeña llevados a cabo en estos cristales de «materia condensada».

Predicen un nuevo tipo de partícula presente en 'universos materiales'

Cristales

Estos cristales se pueden desarrollar en el laboratorio, para hacer experimentos en busca del fermión ahora predicho en WTe2 y en otro material candidato, el ditelururo de molibdeno (MoTe2).

«La imaginación puede ir más allá y preguntarse si partículas que son desconocidos para la teoría cuántica de campos relativista pueden surgir en la materia condensada», dice Bernevig en la web de Princeton. Hay razones para creer que sí, según los investigadores.

El universo descrito por la teoría cuántica de campos está sujeto a la restricción rigurosa de un determinado conjunto de reglas, o simetría, conocida como la simetría de Lorentz, que es característica de las partículas de alta energía. Sin embargo, la simetría de Lorentz no es aplicable en la materia condensada, porque las velocidades típicas de los electrones en sólidos son muy pequeñas en comparación con la velocidad de la luz, por lo que la física de la materia condensada es una teoría de baja energía por definición.

«Uno puede preguntarse», dice Soluyanov, «si es posible que algunos universos materiales acojan partículas no relativistas elementales que no cumplan la simetría de Lorentz?»

Esta pregunta fue respondida positivamente por un trabajo de la colaboración internacional. El trabajo comenzó en una visita de Soluyanov y Dai a Bernevig en Princeton, en noviembre de 2014, discutiendo sobre el extraño e inesperado comportamiento de ciertos metales en los campos magnéticos.

Los investigadores descubrieron que mientras que la teoría relativista sólo permite que exista una única especie de fermiones de Weyl, en los sólidos de materia condensada dos fermiones de Weyl físicamente distintos son posibles.

El fermión de Weyl estándar Tipo-I tiene sólo dos posibles estados en los que puede estar en energía cero, similares a los estados de un electrón que puede tener espín up o espín down. La densidad de estados en energía cero es cero, y el fermión es inmune a muchos efectos termodinámicos interesantes. Este fermión de Weyl existe en la teoría de campos relativista, y es el único permitido si se preserva la invariancia de Lorentz.

El tipo-2 del fermión de Weyl, recién predicho, tiene varios estados termodinámicos en los que puede estar en energía cero: tiene lo que se denomina una superficie de Fermi. Su superficie de Fermi es exótica, debido a que muestra puntos de contacto entre bolsillos de electrones y de huecos. Esto dota al nuevo fermión con una densidad finita de estados que rompe la simetría de Lorentz.

Posibilidades

El descubrimiento abre muchas nuevas direcciones. La mayoría de los metales normales exhiben un aumento en la resistividad cuando se someten a campos magnéticos, un efecto conocido y utilizado en muchas tecnologías actuales. La reciente predicción y la comprobación experimental de la existencia de fermiones de Weyl estándar Tipo-I en semimetales, por dos grupos de Princeton y un grupo del Instituto de Física de China, muestran que la resistividad en realidad puede disminuir si el campo eléctrico se aplica en la misma dirección que el campo magnético, un efecto llamado magnetorresistencia longitudinal negativa.

El nuevo trabajo muestra que los materiales que alojan fermiones de Weyl tipo II mezclan comportamientos: Mientras que para algunas direcciones de los campos magnéticos la resistividad aumenta igual que en los metales normales, para otras direcciones de los campos, la resistividad puede disminuir igual que en los semimetales de Weyl, lo cual ofrece posibles aplicaciones tecnológicas.

«Aún más intrigante es la perspectiva de encontrar más partículas elementales en otros sistemas de materia condensada», dicen los investigadores. «¿Qué clases de otras partículas se pueden ocultar en la variedad infinita de universos materiales? La gran variedad de fermiones emergentes en estos materiales sólo ha comenzado a ser desentrañada.»

Referencia bibliográfica:

Alexey A. Soluyanov, Dominik Gresch, Zhijun Wang, QuanSheng Wu, Matthias Troyer, Xi Dai, B. Andrei Bernevig: Type-II Weyl semimetals. Nature (2015). DOI: 10.1038/nature15768.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • En los próximos meses, una "nueva estrella" iluminará el cielo nocturno 21 marzo, 2024
    Los científicos de la NASA han informado que durante este año el sistema estelar T Coronae Borealis podrá verse a simple vista en el cielo nocturno, luego de una violenta explosión cósmica que tendrá lugar en algún momento en los próximos seis meses. La “nueva estrella” en el cielo podrá apreciarse sin la ayuda de […]
    Pablo Javier Piacente
  • La Antártida puede perder su neutralidad y su actividad exclusivamente científica 21 marzo, 2024
    El cambio climático y la creciente demanda de recursos está sacudiendo de la Antártida como continente neutral y exclusivamente científico. La rivalidad entre potencias ha comenzado a hacerse presente en las costas antárticas.
    Eduardo Martínez de la Fe
  • Los primeros recuerdos son solo reconstrucciones mentales 21 marzo, 2024
    Lejos de ser grabaciones fidedignas de la realidad, los primeros recuerdos son más bien un mosaico compuesto por experiencias reales, narrativas familiares y reconstrucciones mentales. A medida que crecemos, este mosaico se enriquece y se transforma, pero los fragmentos de nuestra primera infancia permanecen, en gran medida, como piezas imaginadas en un rompecabezas de la […]
    Redacción T21
  • Los vínculos sociales alinean a las personas en la misma longitud de onda 20 marzo, 2024
    El vínculo social mejora el intercambio de información y sincroniza las actividades cerebrales entre el líder de un grupo y sus seguidores, colocando a todo el grupo en la misma longitud de onda cerebral, según un nuevo estudio de sincronización neuronal.
    Pablo Javier Piacente
  • Partículas desconocidas de energía oscura serían la fuerza impulsora detrás de la expansión del Universo 20 marzo, 2024
    Una nueva investigación teórica sugiere que la misteriosa energía oscura estaría compuesta por "no partículas" y podría estar ligada a la expansión del cosmos, "separando" lentamente al Universo. Esto explicaría por qué los científicos no logran comprender aún en profundidad cómo el Universo se expande de forma cada vez más acelerada. También revelaría la causa […]
    Pablo Javier Piacente
  • Las mujeres científicas lideran las investigaciones sobre la sequía 20 marzo, 2024
    Las mujeres científicas están a la vanguardia de las investigaciones sobre la sequía para preservar la producción agrícola, gestionar el agua y mitigar los efectos del calentamiento global. Sobre el terreno, están también mejor preparadas para gestionar los desastres naturales.
    Alicia Domínguez y Eduardo Costas (*)
  • Los robots humanoides llegan a la industria automotriz 20 marzo, 2024
    Mercedes ha contratado robots humanoides para trabajar en sus fábricas: participan en las líneas de ensamblaje y automatizan tareas de baja complejidad y alta exigencia física.
    Redacción T21
  • Revelan cómo nace el miedo en el cerebro y una posible vía para paralizarlo 19 marzo, 2024
    Un nuevo estudio ha logrado descifrar una serie de modificaciones en la química cerebral que, al influir sobre circuitos neuronales específicos, provocan que el miedo se generalice y aparezca en situaciones en las que no debería hacerlo. Este sistema es el que genera la sensación de miedo exacerbada y permanente que experimentan las personas que […]
    Pablo Javier Piacente
  • Crean el mapa 3D más extenso de los agujeros negros supermasivos activos del Universo 19 marzo, 2024
    En una verdadera proeza astronómica, los científicos han creado el mapa más extenso hasta el momento de los agujeros negros supermasivos activos y cuásares en el cosmos: el avance marca un salto significativo en nuestra comprensión de estos gigantes cósmicos y podría ayudar a entender mejor las propiedades de la materia oscura.
    Pablo Javier Piacente
  • Descubren cómo las primeras células de la Tierra aprovecharon el H2 como fuente de energía 19 marzo, 2024
    Un nuevo informe descubre cómo el gas hidrógeno, la energía del futuro, proporcionó energía en el pasado, en el origen de la vida hace 4 mil millones de años. Y confirmaría que la vida se originó en respiradores hidrotermales.
    HHU/T21