Tendencias21

Retinas de silicio tan eficientes como las vivas

El proyecto europeo SeeBetter, que se encuentra en su fase final, ha desarrollado unos «sensores retinianos de silicio», que imitan a las retinas vivas, y que transforman imágenes ópticas en señales electrónicas de manera eficiente, produciendo imágenes sólo si hay movimiento o variación en las mismas. No se trata de retinas protésicas, aclaran los investigadores, aunque no descartan que pudieran aplicarse también en ese ámbito.

Retinas de silicio tan eficientes como las vivas

Desde la invención de la primera cámara estenopeica y el surgimiento de la fotografía en el siglo XIX, la ciencia ha intentado aprovechar los sensores de luz para registrar el mundo que nos rodea desde la perspectiva de máquinas generadas por los humanos.

En los últimos años la atención se ha depositado en los sensores de imagen basados en tecnologías CCD (dispositivo de carga acoplada) o CMOS (semiconductor complementario de óxido metálico). Estos dispositivos fotográficos de última generación son capaces de convertir imágenes ópticas en señales electrónicas y han encontrado aplicación en múltiples sectores, como la sanidad, la automoción, los medios de comunicación y la seguridad.

Según un informe reciente de la consultora MarketsandMarkets, del que se hace eco Cordis, los sensores de imagen alcanzarán para 2020 un valor cercano a los 13.240 millones de euros (15.770 millones de dólares). Pero si bien la lucha por la cuota de mercado ha dado lugar a progresos importantes en cuanto al tamaño de los píxeles, y a su densidad, resolución y rendimiento, aún queda mucho por recorrer hasta que estas tecnologías se puedan equiparar con las retinas biológicas.

El proyecto europeo SeeBetter (Seeing Better with hybrid BSI spatio-temporal silicon retina) surgió de la convicción de que estas tecnologías están lastradas por el modo en el que producen secuencias redundantes de imágenes a una tasa de fotogramas limitada.

Un consorcio, dirigido por el IMEC (Centro Interuniversitario de Microelectrónica, de Bélgica), ha destinado los últimos tres años a solventar este problema mediante «la creación de una retina de silicio avanzada con la eficacia cuántica y el procesamiento espaciotemporal superiores que poseen las retinas biológicas». En otras palabras, estudiaron los roles funcionales de las distintas células ganglionares de la retina a fin de comprender mejor la visión retiniana para, acto seguido, recrear esta capacidad y generar datos en función de cambios puntuales en la cantidad de luz recibida.

Estado del proyecto

David San Segundo Bello, coordinador del proyecto, comenta en una entrevista con Cordis el estado del proyecto, las ventajas y desventajas de la tecnología del mismo, sus aplicaciones potenciales y el modo en el que podría influir en las prótesis retinianas: «SeeBetter tiene cuatro objetivos: comprender mejor el rol funcional de las principales clases de células ganglionares de la retina; generar un modelo matemático y computacional del proceso de la visión de la retina desde el punto de vista de la biología, la visión artificial y las futuras prótesis retinianas; diseñar y construir una retina de silicio de altas prestaciones con un conjunto heterogéneo de píxeles especializados en el procesamiento tanto espacial como temporal de la vista; y emplear tecnología de procesamiento de silicio para aumentar la sensibilidad del sensor».

San Segundo matiza que la retina de silicio de SeeBetter «es un sensor de imagen fabricado en silicio que funciona de manera similar a las retinas biológicas, y es muy distinta a las retinas de silicio implantadas en los pacientes a modo de prótesis». Su «sensor retiniano de silicio» podría utilizarse en una retina implantable «artificial» de este tipo, pero en el proyecto no tratan este tipo de aplicaciones.

Otra ventaja del sensor está «en su mayor rango dinámico en comparación con los sensores estándar». El rango dinámico de un sensor de imagen, explica, puede definirse como la diferencia entre la cantidad mínima de luz que puede detectarse antes de alcanzar el suelo de ruido del sistema, y la cantidad de luz máxima detectable antes de saturar el píxel.

«En el caso de los sensores estándar, el aumento del rango dinámico resulta trabajoso y conlleva contrapartidas en cuanto al elemento de fotodetección, la electrónica de lectura de los píxeles y el control de los propios píxeles. En el caso de nuestro sensor, la principal limitación estriba en la cantidad de pulsos que es posible procesar, esto es, la velocidad de la electrónica. Pero dado que no se generan datos si no se producen cambios en la escena a capturar, se reduce el consumo de energía y la cantidad de datos, circunstancia beneficiosa para múltiples aplicaciones posibles».

Funcionamiento

Un sensor retiniano de silicio funciona de manera «completamente distinta» a la mayoría de los sensores de imagen CCD o CMOS. Los sensores de imagen estándar generan datos en función de la cantidad de luz que llega a los píxeles del sensor.

La información reside en la «amplitud» de la señal de los píxeles y estos están activos y realizan lecturas a intervalos constantes definidos por la tasa de fotogramas o el tiempo de exposición. La información pertinente para la aplicación se extrae de estos valores de píxel para cada fotograma.

«Nuestro sensor, por el contrario, se basa en un principio de Sensor de visión dinámico (DVS), que está inspirado en el funcionamiento de las retinas biológicas. En lugar de generar datos proporcionales a la cantidad de luz, cada píxel es sensible a cambios puntuales que influyen en esta cantidad de luz. Los datos generados son, por tanto, pulsos digitales asíncronos y la información reside en la cantidad de tiempo que transcurre entre pulsos. Por ejemplo, un cambio lento en la cantidad de luz que incide en un píxel en concreto generará pulsos a una velocidad relativamente lenta, mientras que los cambios repentinos generan pulsos a mayor velocidad. Además, si no existen cambios en la imagen a capturar por el sensor, no se generan datos».

San Segundo aclara que las retinas biológicas naturales «son más complejas, por supuesto, y tienen muchos tipos distintos de píxeles (células) que además se comunican entre sí con las más cercanas. Este tipo de propiedades sería muy complicado —si no imposible— de desarrollar con tecnologías CMOS estándar. En nuestro proyecto añadimos varias funcionalidades adicionales a los píxeles con respecto a los sensores retinianos de silicio ya existentes, pero es un incremento mínimo. No obstante, estamos convencidos de que esta limitación en la funcionalidad en comparación con las retinas reales puede resultar de gran utilidad en múltiples aplicaciones de la visión».

«Por supuesto», continúa, «nada sale gratis y para lograr estas funcionalidades adicionales es necesario contar con píxeles más grandes, con una distancia entre ellos de entre diez y veinte micrómetros en función del nodo tecnológico y la funcionalidad del píxel. En comparación, los sensores estándar de última generación poseen píxeles de entre dos y cinco micrómetros y algunos fabricantes ya incluyen distancias entre píxeles cercanas a un micrómetro».

Descubrimientos

En cuanto a descubrimientos «revolucionarios», el socio de SeeBetter experto en biología, el Instituto Friedrich Miescher de Basilea (Suiza), ha obtenido los resultados «más llamativos» y logrado ampliar el conocimiento que se posee sobre los mecanismos que rigen los conos de la retina. «Sus resultados se han plasmado en varias publicaciones en revistas de gran impacto como Science y Cell«.

En lo referente al propio sensor, la Universidad de Zúrich ensayó satisfactoriamente el primer sensor retiniano de silicio con píxeles «estándar», que permiten lograr un procesamiento visual más complejo y ampliar la utilidad de estos sensores.

El Imperial College de Londres desarrolló un emulador de hardware de un sensor retiniano con cámaras comerciales estándar. El IMEC desarrolló y fabricó un sistema de procesamiento de silicio para sensores de imágenes que puede utilizarse para aplicaciones caracterizadas por volúmenes grandes.

Producción

San Segundo informa de que su sensor se fabrica «en una fundición de silicio de primer orden. Si tuviéramos que utilizar el sensor en grandes cantidades, casi todas las piezas podrían enviarse para su producción masiva».

El proyecto está en sus últimos meses. El dispositivo final ya se ha fabricado y ahora comienzan los ensayos. «Los miembros del consorcio no planean continuar con el proyecto, pero sí que seguirán trabajando en las tecnologías desarrolladas y en los descubrimientos logrados en él», concluye.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • ¿Puede la gripe aviar desatar una nueva pandemia? 11 febrero, 2025
    Una nueva cepa de gripe aviar en Nevada, Estados Unidos, muestra una mutación preocupante: se trata de una variedad que intriga a los científicos, porque se relaciona directamente con la influenza aviar altamente patógena (IAAP) en humanos, que provocó la primera y única muerte humana relacionada con la gripe aviar en América del Norte hasta […]
    Pablo Javier Piacente / T21
  • Descubren cómo el cerebro supera el miedo 11 febrero, 2025
    Un equipo de investigadores ha identificado cómo el cerebro supera al miedo en roedores: han logrado describir el mecanismo cerebral que se activa en los ratones para superar el miedo instintivo. De confirmarse en humanos, el hallazgo podría ayudar a la investigación de tratamientos y soluciones para personas con patologías como el trastorno de estrés […]
    Pablo Javier Piacente / T21
  • El núcleo de la Tierra podría estar a punto de estallar: habría volcanes a 5.000 kilómetros de profundidad 11 febrero, 2025
    Un estudio revela que el núcleo interno de la Tierra está cambiando de forma misteriosa y aún incierta: el núcleo interno giratorio no solamente modifica su velocidad de rotación, sino que también parece cambiar de forma, con variaciones que se manifiestan a través de las ondas acústicas que se propagan por el centro de la […]
    Redacción T21
  • Una exposición muestra el camino a la extinción de millones de seres vivos marinos conscientes 11 febrero, 2025
    Ecos del océano, una exposición que une ciencia, tecnología, arte y creatividad, muestra los ecos que surgen en la mente de una ballena cuando tropieza con la contaminación sonora generada por la actividad humana. Una experiencia inmersiva invita a preservar el equilibrio entre el ser humano, la naturaleza y el resto de especies que conviven en […]
    Alejandro Sacristán (enviado especial).
  • La IA ya supera a los humanos en el fraude digital 10 febrero, 2025
    Un nuevo estudio destaca la creciente sofisticación de los grandes modelos de lenguaje (LLM), la estructura detrás de los chatbots de IA más conocidos, para crear estrategias de fraude cibernético. Estos modelos pueden diseñar campañas de phishing hiperpersonalizadas y persuasivas, a una fracción del coste y el tiempo que requieren los métodos tradicionales desarrollados por […]
    Pablo Javier Piacente / T21
  • Alerta: Creciente riesgo de que restos de cohetes afecten zonas de intenso tráfico aéreo 10 febrero, 2025
    Un nuevo estudio publicado en la revista Scientific Reports advierte sobre el aumento del peligro que representa la basura espacial para la aviación comercial. La investigación, realizada por científicos de la Universidad de Columbia Británica, en Canadá, concluye que existe una probabilidad anual del 26% de que los desechos de cohetes espaciales reingresen a la […]
    Pablo Javier Piacente / T21
  • Los cantos de las ballenas son similares al lenguaje humano: puedes comprobarlo aquí 10 febrero, 2025
    Los científicos han descubierto la misma estructura o conjunto de patrones rítmicos que son un sello distintivo del lenguaje humano en el canto de las ballenas jorobadas: los hallazgos muestran que incluso especies tan disímiles evolutivamente pueden compartir sistemas de comunicación que se transmiten culturalmente de generación en generación.
    Redacción T21
  • El Rapto del Mundo: la democracia naufraga en la era del ultraliberalismo, pero no ha sido conquistada 10 febrero, 2025
    Lo que está pasando con la democracia puede compararse con el mito del rapto de Europa: seducida con engaños, se ha adentrado en un proceso de erosión de las instituciones, polarización social y desregulación económica que la aleja de su inspiración humanista. ¿Estamos presenciando el nacimiento de un nuevo orden político global?
    EDUARDO MARTÍNEZ DE LA FE/T21
  • La IA puede ser más creativa que los seres humanos 9 febrero, 2025
    La IA puede superar a la mayoría de los humanos en tareas de pensamiento creativo, según un nuevo estudio: los chatbots de IA de modelo de lenguaje grande (LLM) pueden superar al humano promedio en una tarea de pensamiento creativo en la que el participante idea usos alternativos para objetos cotidianos, un ejemplo en el […]
    Pablo Javier Piacente
  • El primer conectoma del cerebro de un insecto revoluciona la neurociencia 8 febrero, 2025
    Los científicos han conseguido por primera vez establecer el diagrama de las conexiones sinápticas del cerebro de un insecto que tiene 100.000 neuronas, toda una proeza para comprender mejor al cerebro humano y potenciar la Inteligencia Artificial.
    EDUARDO MARTÍNEZ DE LA FE/T21