Tendencias21
Sensores cuánticos nanométricos para estudiar la física 'invisible'

Sensores cuánticos nanométricos para estudiar la física 'invisible'

Físicos de la Universidad de California en Santa Bárbara (EE.UU.) han diseñado una tecnología de sensores basada en la mecánica cuántica, con resolución nanométrica, y que operan desde la temperatura ambiente hasta las temperaturas más bajas, donde se observan los fenómenos físicos más ocultos, y más interesantes.

Sensores cuánticos nanométricos para estudiar la física 'invisible' Utilizar un solo átomo para capturar imágenes de alta resolución de material a nanoescala puede sonar a ciencia ficción, pero eso es exactamente lo que ha logrado el Grupo de Imágenes y Detección Cuántica de la Universidad de California en Santa Bárbara (EE.UU.).

Los miembros del laboratorio de la física Ania Jayich han trabajado durante dos años para desarrollar una tecnología radicalmente nueva de sensores con una resolución espacial a escala nanométrica y sensibilidad exquisita. Sus hallazgos aparecen en la revista Nature Nanotechnology.

«Esta es la primera herramienta de este tipo», dice Jayich en la información de la universidad. «Opera desde temperatura ambiente hasta temperaturas bajas, donde sucede una gran cantidad de la física más interesante. Cuando la energía térmica es suficientemente baja, los efectos de las interacciones de los electrones, por ejemplo, se convierten en observables, conduciendo a nuevas fases de la materia. Y ahora podemos investigarlas con una resolución espacial sin precedentes».

Bajo el microscopio, el singular sensor cuántico se asemeja a un cepillo de dientes. Cada «cerda» contiene un único cristal de diamante nanofabricado sólido, con un defecto especial, un centro nitrógeno-vacante (NV), ubicado en la punta. Consiste en que, en lugar de dos átomos adyacentes de carbono, hay un átomo de nitrógeno, que permite la detección de propiedades específicas de los materiales, en particular el magnetismo. Estos sensores se fabricaron en la sala blanca del Servicio de Nanofabricación de la UCSB.

El equipo optó por obtener una imagen de un material superconductor relativamente bien estudiado que contiene estructuras magnéticas llamados vórtices: regiones localizadas de flujo magnético. Con su instrumento, los investigadores fueron capaces de obtener imágenes de los vórtices individuales.

«Nuestra herramienta es un sensor cuántico porque se basa en la rareza de la mecánica cuántica», explica Jayich. «Pusimos el defecto NV en una superposición cuántica, en la que puede estar en un estado u otro -que desconocemos- y luego dejamos que el sistema evolucionara en presencia de un campo y lo medimos. Esta incertidumbre de la superposición es la que permite que la medición se produzca». Sensores cuánticos nanométricos para estudiar la física 'invisible' Temperatura

Tal comportamiento cuántico se asocia a menudo con los entornos de baja temperatura. Sin embargo, el instrumento cuántico especializado del grupo opera a temperatura ambiente, y hasta los 6º Kelvin (-267º centígrados, cerca del 0 absoluto), por lo que es muy versátil, singular y capaz de estudiar diversas fases de la materia y las transiciones de fase asociadas.

«Una gran cantidad de otras herramientas de microscopía no tienen ese rango de temperatura», explica Jayich. «Otros puntos destacados de nuestra herramienta son su excelente resolución espacial, gracias al hecho de que el sensor comprende un solo átomo. Además, su tamaño hace que sea no invasivo, lo que significa que afecta mínimamente a la física subyacente en el sistema».

El equipo está actualmente obteniendo imágenes de skyrmions magnéticos -cuasi-partículas con configuraciones magnéticas similares a las de los vórtices- con inmenso atractivo para el futuro almacenamiento de datos y tecnologías de espintrónica.

Aprovechando la resolución espacial a nanoescala de su instrumento, su objetivo es determinar la fuerza relativa de las interacciones que compiten en la materia que dan lugar a los skyrmions. «Hay una gran cantidad de diferentes interacciones entre átomos y hay que entenderlas todas antes de poder predecir cómo se comportará el material», dice Jayich.

«Si se obtiene una imagen del tamaño de los dominios magnéticos del material y cómo evolucionan en pequeñas escalas de longitud, eso da información sobre el valor y la fuerza de estas interacciones», añade. «En el futuro, esta herramienta va a ayudar a comprender la naturaleza y la fuerza de las interacciones en los materiales que luego dan lugar a nuevos estados y fases de la materia interesantes, que son interesantes desde el punto de vista de la física fundamental, pero también desde el de la tecnología.» Referencia bibliográfica:

Matthew Pelliccione, Alec Jenkins, Preeti Ovartchaiyapong, Christopher Reetz, Eve Emmanouilidou, Ni Ni, Ania C. Bleszynski Jayich: Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nature Nanotechnology (2016). DOI: 10.1038/nnano.2016.68.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren cómo Plutón consiguió su corazón 16 abril, 2024
    El misterio de cómo Plutón consiguió una característica gigante en forma de corazón en su superficie finalmente ha sido resuelto: los científicos lograron reproducir con éxito la forma inusual con simulaciones numéricas, atribuyéndola a un impacto gigante y lento en ángulo oblicuo. Se trató de una colisión con un cuerpo planetario de unos 700 kilómetros […]
    Pablo Javier Piacente
  • La vida podría existir desde los inicios del Universo 16 abril, 2024
    El físico Avi Loeb sostiene en un reciente artículo que los elementos para el desarrollo de la vida tal como la conocemos podrían estar presentes en el cosmos desde la formación de las primeras estrellas, unos 100 millones de años después del Big Bang. También postula que esta hipótesis podría comprobarse si la misión Dragonfly […]
    Pablo Javier Piacente
  • Crean un acelerador de partículas en miniatura con aplicaciones médicas 16 abril, 2024
    Investigadores alemanes han desarrollado un acelerador de electrones que mide poco menos de medio milímetro de largo y 0,2 micrómetros de ancho, es decir, menos de una milésima de milímetro. Tiene aplicaciones en la investigación básica y permitirá crear nuevas herramientas de radioterapia. Entrevista con sus protagonistas, Peter Hommelhoff y Stefanie Kraus.
    Oscar William Murzewitz (Welt der Physik)/T21
  • Revelan la primera molécula fractal en la naturaleza 15 abril, 2024
    Los científicos han descubierto una molécula en la naturaleza que sigue un patrón geométrico de autosimilitud, conocido como fractal. La enzima microbiana denominada citrato sintasa es la primera estructura fractal molecular ensamblada directamente en la naturaleza que ha logrado identificarse hasta el momento. Los especialistas creen que este fractal puede representar un accidente evolutivo.
    Pablo Javier Piacente
  • El cambio climático podría estar relacionado con el aumento de los accidentes cerebrovasculares 15 abril, 2024
    Una nueva investigación ha demostrado que el número de muertes ligadas a accidentes cerebrovasculares y otras patologías relacionadas ha ido creciendo desde 1990, a la par del aumento de las temperaturas extremas. Durante 2019, el último año analizado, más de 500.000 muertes por accidentes cerebrovasculares se vincularon con temperaturas "no óptimas", provocadas por el calentamiento […]
    Pablo Javier Piacente
  • La globalización está fracturando a la humanidad 15 abril, 2024
    La globalización no está conduciendo a una civilización universal con valores compartidos, sino que está creando una brecha creciente entre los países occidentales de altos ingresos y el resto del mundo, en cuanto a valores como la tolerancia, la diversidad y la libertad.
    Eduardo Martínez de la Fe
  • En el caso de los caracoles, el huevo fue lo primero 14 abril, 2024
    Un caracol marino que primero fue ovíparo y evolucionó hacia la viviparidad revela que los saltos evolutivos ocurren gradualmente, a través de una serie de pequeños cambios.
    Redacción T21
  • Revelan el misterio del árbol tropical que camina 13 abril, 2024
    La denominada "palma caminante" o Socratea exorrhiza es un árbol de América Central y del Sur que según distintas versiones podría "caminar" y erguirse en determinadas situaciones: ahora, este mito parece haber sido resuelto bajo criterios científicos. Según los investigadores, aunque el árbol puede crecer rápidamente y crear nuevas raíces para lidiar con la pérdida […]
    Pablo Javier Piacente
  • Descubren 50 especies desconocidas para la ciencia en la exótica Isla de Pascua 12 abril, 2024
    Una expedición a la Cordillera de Salas y Gómez, frente a Rapa Nui, en el Océano Pacífico, documentó 160 especies animales que no se sabía que habitaban esta región de la misteriosa Isla de Pascua, en Chile. Además, descubrieron 50 criaturas que son absolutamente nuevas para la ciencia.
    Pablo Javier Piacente
  • El clima espacial podría generar un caos satelital sin precedentes 12 abril, 2024
    Los satélites en órbita terrestre baja (LEO) pueden perder su brújula cuando el clima espacial ofrece situaciones inesperadas. El problema afecta a la Estación Espacial Internacional, la estación espacial Tiangong de China y muchos satélites de observación de la Tierra. Los expertos sostienen que esta incertidumbre de posicionamiento aumenta el riesgo de colisiones orbitales peligrosas, […]
    Pablo Javier Piacente