Tendencias21

Diseñan un acelerador de partículas en miniatura

Científicos de Alemania han diseñado un acelerador de partículas en miniatura, que utiliza radiación de terahercios para acelerar las partículas, en lugar de radiofrecuencia. El tamaño se reduce por 100, y un módulo cabe entre los dedos. El objetivo es utilizarlo en múltiples aplicaciones, incluidos los láseres de electrones libres, que tendrían menos de un metro de largo (en lugar de los tres kilómetros que miden los proyectos equivalentes actuales).

Diseñan un acelerador de partículas en miniatura

Un equipo interdisciplinar de investigadores ha construido el primer prototipo de acelerador de partículas en miniatura que usa radiación de terahercios en lugar de estructuras de radiofrecuencia. Un módulo de acelerador (una de las partes que lo componen) no tiene más de 1,5 centímetros de largo y un milímetro de grosor.

La tecnología de terahercios promete miniaturizar toda la puesta a punto por lo menos por un factor de 100, según los científicios dirigidos por Franz Kärtner, del Centro para la Ciencia del Láser de Electrones Libres (CFEL), de Hamburgo (Alemania). Presentan su prototipo, que fue creado en el laboratorio de Kärtner en el Instituto de Tecnología de Massachusetts (MIT, EE.UU.), en la revista Nature Communications.

Los autores ven numerosas aplicaciones de los aceleradores de terahercios, en ciencia de materiales, medicina y física de partículas, así como en la producción de láseres de rayos X. CFEL es una cooperación entre DESY (Sincrotrón Alemán de Electrones, de Hamburgo), la Universidad de Hamburgo y la Sociedad Max Planck.

En el espectro electromagnético, la radiación de terahercios se encuentra entre la radiación infrarroja y la microondas. Los aceleradores de partículas por lo general dependen de la radiación electromagnética de la gama de radiofrecuencia; el acelerador de partículas Petra II, de DESY, utiliza por ejemplo una frecuencia de alrededor de 500 megahercios. La longitud de onda de la radiación de terahercios usada en este experimento es alrededor de mil veces más corta.

«La ventaja es que todo lo demás puede ser mil veces más pequeño también», explica en la nota de prensa de DESY Kärtner, que es profesor de la Universidad de Hamburgo y en el MIT, además de ser miembro del Centro de Imágenes Ultrarrápidas de Hamburgo.

Los científicos utilizaron para su prototipo un módulo de acelerador microestructurado especial, diseñado específicamente para ser utilizado con radiación de terahercios. Los físicos dispararon electrones de alta velocidad en el módulo acelerador en miniatura utilizando un tipo de cañón de electrones proporcionado por el grupo del CEFL del profesor Dwayne Miller, director del Instituto Max Planck para la Estructura y Dinámica de la Materia.

Los electrones se aceleraron aún más por la radiación de terahercios introducida en el módulo. Este primer prototipo de acelerador de terahercios fue capaz de aumentar la energía de las partículas en siete kiloelectronvolts (keV).

«No es una aceleración particularmente grande, pero el experimento demuestra que el principio funciona en la práctica», explica el coautor Arya Fallahi, del CFEL, que hizo los cálculos teóricos. «La teoría indica que debemos ser capaces de lograr un gradiente de aceleración de hasta un gigavoltio por metro.» Esto es más de diez veces lo que se puede lograr con los mejores módulos de aceleración convencionales disponibles en la actualidad.

La tecnología del acelerador de plasma, que también está en etapa experimental en este momento, promete producir aceleraciones aún más altas, pero también requiere láseres significativamente más potentes que los que se necesitan para los aceleradores de terahercios.

Aplicaciones

Los físicos subrayan que la tecnología de terahercios es de gran interés tanto en lo que respecta a los futuros aceleradores lineales para su uso en la física de partículas, como para construir láseres compactos de rayos X y fuentes electrónicas para su uso en la investigación de materiales, así como en aplicaciones médicas utilizando rayos X y radiación de electrones.

«Los rápidos avances que estamos viendo en la generación de terahercios con métodos ópticos permitirán el desarrollo futuro de los aceleradores de terahercios para estas aplicaciones», dice el primer autor Emilio Nanni, del MIT. En los próximos años, el equipo del CFEL planea construir un láser experimental y compacto de rayos X de electrones libres (XFEL) a escala de laboratorio utilizando la tecnología de terahercios, con el apoyo del Consejo Europeo de Investigación.

Láseres de electrones libres

Los llamados láseres de electrones libres (FEL) generan destellos de luz láser mediante el envío de electrones de alta velocidad desde un acelerador de partículas por un camino ondulante, de modo que emiten luz cada vez que se desvían. Este es el mismo principio que será utilizado por el láser de rayos X XFEL Europeo, que actualmente está siendo construido por un consorcio internacional.

Va desde el Campus de DESY en Hamburgo a la vecina localidad de Schenefeld. La instalación tendrá en total más de tres kilómetros de largo y será la mejor y más moderna de su tipo.

Se espera que el XFEL experimental que utilice terahercios sea inferior a un metro de largo. «Esperamos que este tipo de dispositivo produzca pulsos de rayos X mucho más cortos, que duren menos de un femtosegundo», dice Kärtner. Debido a que los impulsos son tan cortos, alcanzan un pico de brillo comparable a los producidos por instalaciones más grandes, incluso si hay significativamente menos luz en cada pulso. «Con estos pulsos tan cortos esperamos obtener nuevos conocimientos sobre los procesos químicos extremadamente rápidos, como los que participan en la fotosíntesis.»

El desarrollo de una comprensión detallada de la fotosíntesis abriría la posibilidad de implementar este eficiente proceso de forma artificial y explorar así una conversión de energía solar más eficiente y nuevas vías para la reducción de CO2. Más allá de esto, los investigadores están interesados ​​en muchas otras reacciones químicas. Como señala Kärtner, «la fotosíntesis es sólo un ejemplo de muchos procesos catalíticos posibles que nos gustaría investigar.»

El XFEL compacto podría usarse también para introducir pulsos en instalaciones a gran escala para mejorar la calidad de los que tienen.

Referencia bibliográfica:

Emilio A. Nanni, Wenqian R. Huang, Kyung-Han Hong, Koustuban Ravi, Arya Fallahi, Gustavo Moriena, R. J. Dwayne Miller & Franz X. Kärtner: Terahertz-driven linear electron acceleration. Nature Communications (2015). DOI: 10.1038/NCOMMS9486.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • La acidez cerebral podría estar relacionada con múltiples trastornos neurológicos 11 abril, 2024
    Un estudio en animales a gran escala vincula los cambios en el pH del cerebro con problemas cognitivos de amplio alcance, ligados a patologías como el autismo o el Alzheimer, entre otras. Los científicos creen que los problemas metabólicos en el cerebro podrían estar directamente relacionados con una variedad de trastornos neuropsiquiátricos y neurodegenerativos.
    Pablo Javier Piacente
  • Cultivan organoides cerebrales con conexiones neuronales similares a las de un cerebro real 11 abril, 2024
    Un equipo internacional de investigadores ha desarrollado una técnica para conectar tejidos cultivados en laboratorio que imitan al cerebro humano de una manera que se asemeja a los circuitos neuronales del cerebro real. El "sistema" de mini cerebros interconectados podría revolucionar nuestra comprensión de las funciones cerebrales.
    Pablo Javier Piacente
  • Los Estados se exponen a condenas judiciales por inacción climática 11 abril, 2024
    Suiza es el primer Estado condenado judicialmente por no resolver el desafío climático y violar los derechos humanos de las personas mayores. Hace un año, 16 niños y jóvenes obtuvieron una sentencia condenatoria contra el Estado de Montana por destruir con sus leyes el medioambiente. Cualquier Estado puede ser denunciado si no preserva el ambiente en […]
    Eduardo Martínez de la Fe
  • Detectan extraños pulsos de radio procedentes de un magnetar que desconciertan a los científicos 10 abril, 2024
    Los astrónomos han detectado señales de radio inusuales procedentes de XTE J1810-197, un radiomagnetar o estrella de neutrones ultramagnética situada a 8.100 años luz de distancia de la Tierra, en la constelación de Sagitario. Los resultados son inesperados y sin precedentes: a diferencia de las señales de radio que se han detectado en otros magnetares, […]
    Pablo Javier Piacente
  • La IA podría ser el límite para todas las civilizaciones avanzadas en el Universo 10 abril, 2024
    Un nuevo estudio sugiere que el desarrollo de la Inteligencia Artificial (IA) hacia una Superinteligencia Artificial (ASI) podría explicar por qué no hemos detectado aún otras civilizaciones avanzadas en el cosmos, a pesar de la alta probabilidad de su existencia: en vez de supernovas, plagas, guerras nucleares o eventos climáticos extremos que hayan sido un […]
    Pablo Javier Piacente
  • Higgs ha podido dejar abierta la puerta a la Nueva Física 10 abril, 2024
    La muerte de Peter Higgs, que pasará a la historia como el descubridor del bosón que explica cómo se forma la materia, deja un legado en la historia de la física que todavía puede aportar algo más trascendente: la prueba definitiva de una Nueva Física más allá del Modelo Estándar.
    Eduardo Martínez de la Fe
  • Descubren neuronas "zombis" en el cerebro, que serían claves en el proceso de aprendizaje 9 abril, 2024
    Las neuronas "zombis" son unidades vivas pero funcionalmente alteradas, que parecen "dormidas" en determinadas situaciones: los investigadores han revelado que cumplen un papel fundamental en el cerebelo, concretamente en aspectos relativos a la forma en la cual aprendemos.
    Pablo Javier Piacente
  • La Luna se invirtió por completo hace más de 4 mil millones de años 9 abril, 2024
    Hace unos 4.220 millones de años, poco después de que la Luna se formara a partir de un trozo de la Tierra que se desprendió durante una colisión violenta a principios de la historia del Sistema Solar, nuestro satélite se dio vuelta y comenzó así una etapa clave de su desarrollo. Así lo ha comprobado […]
    Pablo Javier Piacente
  • Arte rupestre de hace 2.000 años podría representar música psicodélica 9 abril, 2024
    Aunque la música psicodélica moderna no nació hasta la década de 1960, las influencias psicodélicas se pueden encontrar en el arte rupestre de hace miles de años. Grabados precolombinos en piedra, de 2.000 años de antigüedad, reflejan figuras humanas bailando en estado de trance chamánico.
    Redacción T21
  • Descubren antiguas partículas de polvo espacial provenientes de otro sistema estelar 8 abril, 2024
    Los astrónomos han descubierto una rara partícula de polvo atrapada en un antiguo meteorito extraterrestre, que fue formado por una estrella distinta a nuestro Sol. El polvo se habría originado luego de una supernova: las partículas son como "cápsulas del tiempo celestes" y proporcionan una instantánea de la vida de su estrella madre.
    Pablo Javier Piacente