Tendencias21
La física fundamental supera la barrera de la gravedad

La física fundamental supera la barrera de la gravedad

No solo se puede crear en el espacio el quinto estado de la materia, sino también medir en microgravedad las fluctuaciones de los átomos. Lo siguiente será comprobar el principio de equivalencia en un cohete.

Investigadores alemanes han demostrado que el quinto estado de la materia se puede conseguir en el espacio y también que la ondulación de los átomos se puede medir en microgravedad.

Lo han conseguido en dos experimentos diferentes: el primero para alcanzar el condensado Bose-Einstein a bordo de un cohete, y ahora certificando la interferometría atómica en microgravedad.

Ambos progresos suponen un considerable impulso a la investigación en física fundamental, porque supera la interferencia de la gravedad en el conocimiento de los aspectos más intrincados de la materia.

La interferometría es una técnica mediante la cual se superponen ondas para provocar el fenómeno de interferencia: extrae información útil relacionada con la astronomía, la fibra óptica, la mecánica cuántica y la física nuclear, entre otras muchas aplicaciones posibles.

Aplicada a los átomos, la interferometría utiliza el carácter ondulatorio de los átomos para obtener información, particularmente mediciones de la constante gravitacional, la constante de estructura fina o de la universalidad de la caída libre. Incluso se cree que serviría para detectar ondas gravitatorias.

Lidiando con la gravedad

Uno de los problemas que presentan estas mediciones precisas es la interferencia de la gravedad en los procesos ondulatorios. Por este motivo, lo mejor es desarrollar estos experimentos lo más lejos posible de la superficie terrestre.

Y ahora, por primera vez, un equipo de científicos de Alemania ha logrado realizar con éxito interferometría de átomos en el espacio, a bordo de un cohete, a 300 kilómetros de altitud sobre la superficie terrestre.

La proeza ha puesto de manifiesto que la base tecnológica para estas complicadas mediciones, tan necesarias para conocimientos científicos de vanguardia, no solo son posibles en la Tierra, sino también en el espacio. Los resultados se publican en Nature Communications.

El escenario donde se han conseguido estas mediciones es una sonda de la misión MAIUS-1, lanzada en enero de 2017 por un equipo de investigadores de varias universidades y centros de investigación, dirigido por la Universidad Leibniz de Hannover.

Misión espacial

La misión MAIUS 1 (Interferometría de ondas de materia en microgravedad) es uno de los experimentos más complejos jamás realizados en un cohete. Y no solo ha servido para testar la interferometría de átomos en microgravedad.

Durante su primer vuelo, que duró aproximadamente 15 minutos, los científicos lograron hace cuatro años realizar aproximadamente 100 exitosos experimentos con el condensado de Bose-Einstein. Tres años después lo conseguiría también la Estación Espacial Internacional (ISS).

El condensado de Bose-Einstein, también considerado el quinto estado de la materia (diferente a los conocidos sólido, líquido, gas y plasma), se caracteriza por su comportamiento fronterizo: se desenvuelve entre el mundo regido por la física clásica y el universo cuántico.

Conocer este ambiguo estado de la materia ayuda a los científicos a comprender mejor los niveles más elementales de la naturaleza, aunque la gravedad siempre ha representado un problema para las mediciones.

MAIUS-1 se ha convertido en la primera misión que ha superado esta dificultad: no solo ha generado un condensado de Bose-Einstein en el espacio, sino también en la primera misión que certifica la validez de la interferometría atómica en microgravedad.

Tema relacionado: Jaque mate al Modelo Estándar que explica al universo

Nuevo paso

La certificación de la interferometría atómica se basó en el enfriamiento de los átomos de rubidio que se realiza para obtener el quinto estado de la materia.

La temperatura es uno de los factores determinantes para la interferometría, porque las mediciones se pueden realizar con mayor precisión y por períodos más largos a temperaturas más bajas, destacan los investigadores en un comunicado.

Gracias a este experimento, se podrán desarrollar nuevos estudios dirigidos a la medición del campo gravitacional de la Tierra, la detección de ondas gravitacionales e incluso a una prueba del principio de equivalencia de Einstein en microgravedad.

El principio de equivalencia es una dimensión esencial de la teoría de la relatividad general de Einstein: señala que todos los cuerpos situados dentro de un mismo campo gravitatorio caen con la misma aceleración.

El reto científico es comprobar su validez en el espacio, al igual que se ha certificado la formación del quinto estado de la materia en microgravedad.

Más cohetes

Para ello, se planean dos lanzamientos de cohetes más, MAIUS-2 y MAIUS-3, para 2022 y 2023: en estas misiones, el equipo tiene la intención de usar átomos de potasio, además de átomos de rubidio empleados en el condensado Bose-Einstein, para producir patrones de interferencia.

Al comparar la aceleración de caída libre de los dos tipos de átomos, se puede facilitar una prueba del principio de equivalencia con una precisión previamente inalcanzable, señalan los investigadores.

Realizar este tipo de experimento es lo que se propone también BECCAL (Bose Einstein Condensates & Cold Atoms Lab), una instalación multiusuario que se lanzará en 2025, capaz de realizar experimentos con átomos fríos y condensados ​​Bose Einstein a bordo de la Estación Espacial Internacional (ISS).

Los investigadores concluyen señalando que los experimentos realizados a bordo del MAIUS-1, y los que se realizarán en el futuro, constituyen un ejemplo del campo de investigación altamente activo de las tecnologías cuánticas, que también incluye desarrollos en los campos de la comunicación cuántica, sensores y computación cuánticos.

Referencia

Ultracold atom interferometry in space. Maike D. Lachmann et al. Nature Communications volume 12, Article number: 1317 (2021). DOI:https://doi.org/10.1038/s41467-021-21628-z

Foto superior: un ejemplo de un patrón de interferencia producido por el interferómetro atómico. ©: Maike Lachmann, IQO.

Eduardo Martínez de la Fe

Eduardo Martínez de la Fe, periodista científico, es el Editor de Tendencias21.

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubierto el ritual más antiguo del mundo, transmitido durante 500 generaciones 2 julio, 2024
    Un ritual ancestral en una cueva de Australia podría ser el más antiguo del mundo: practicado durante 500 generaciones por indígenas australianos, se desarrolla sin interrupciones desde hace 12.000 años hasta la actualidad, aunque fue documentado inicialmente en el siglo XIX. Identificado a partir de restos de viejas fogatas, los científicos creen que podría ser […]
    Pablo Javier Piacente
  • Revelan un nuevo paraíso hidrotermal en las profundidades del océano 2 julio, 2024
    Frente a la costa de Svalbard, en Noruega, a más de 3.000 metros de profundidad, los científicos han descubierto un campo de fuentes hidrotermales a lo largo de la cresta Knipovich, una cadena montañosa submarina. El sitio esconde un oasis de extrañas formas de vida, capaces de prosperar en los ambientes más extremos de la […]
    Pablo Javier Piacente
  • El camino a los viajes espaciales de larga duración empieza a abrirse gracias a la criónica 2 julio, 2024
    La criónica ha conseguido revivir a gusanos y ampliar la ralentización biológica en operaciones a corazón abierto. El siguiente paso será la criopreservación de órganos y organismos enteros de forma reversible a temperaturas bajo cero. Entonces será posible viajar durante cientos de años a planetas lejanos.
    Alejandro Sacristán
  • Una sola molécula podría revertir el envejecimiento en los músculos y el cerebro 1 julio, 2024
    Un nuevo estudio en ratones y células humanas sugiere que una molécula especialmente seleccionada por los investigadores puede ayudar a revertir los signos del envejecimiento en los músculos y el cerebro, al extender los telómeros y modular genes de vital importancia. En concreto, la molécula inyecta dinamismo a una proteína denominada TERT, que es un engranaje […]
    Pablo Javier Piacente
  • El Telescopio Web detecta extrañas formas brillantes sobre Júpiter 1 julio, 2024
    En lo alto de la atmósfera de Júpiter, específicamente en la ionosfera, los astrónomos han identificado con la ayuda del Telescopio Espacial James Webb (JWST), nuevas características extrañas y brillantes. Se ubican en la región situada encima de la tempestuosa Gran Mancha Roja, y serían un reflejo de las potentes tormentas que se desatan en […]
    Pablo Javier Piacente
  • Fabrizio Gagliardi: la IA Generativa está provocando un giro copernicano en cómo hacemos ciencia 1 julio, 2024
    La comunidad científica se ha unido en un consorcio para alumbrar la IA de la ciencia, cuyo lanzamiento europeo tuvo lugar recientemente en Barcelona. Fabrizio Gagliardi, representante del BSC-CNS en ese consorcio, advierte que Europa está lejos de alcanzar el nivel de desarrollo de la IA Generativa que vemos en Estados Unidos.
    Eduardo Martínez de la Fe
  • Una revolucionaria mano biónica se fusiona directamente con el cuerpo humano 30 junio, 2024
    Una nueva mano biónica desarrollada por un grupo de investigadores se basa en una tecnología revolucionaria, capaz de conectar directamente la prótesis robótica a los huesos, músculos y nervios del usuario. Esto permite crear una interfaz humano-máquina, que facilita a la Inteligencia Artificial (IA) la traducción de señales cerebrales en movimientos simples pero precisos.
    Pablo Javier Piacente
  • Un proyecto global trabaja para crear de forma colaborativa un cerebro robótico general 29 junio, 2024
    El auge de la inteligencia artificial generativa impulsa un proyecto global que trabaja para crear un cerebro robótico general, capaz de generar androides como los que hemos visto hasta ahora solo en la ciencia ficción. Pero es cuestión de tiempo que convivamos con ellos en perfecta armonía. Ya no es una utopía.
    Eduardo Martínez de la Fe
  • Las hormigas invasoras hacen autostop para encontrar un nuevo hogar 28 junio, 2024
    Se sabe que los insectos son especialistas en utilizar todo tipo de formas de transporte para atravesar amplias distancias, pero un nuevo estudio ha revelado que las hormigas también dominan el autostop: estos insectos sociales recogen a toda la familia, incluida su reina, y se suben al primer vehículo que encuentran para emprender un viaje […]
    Pablo Javier Piacente
  • Los recuerdos imborrables se adhieren a algunas neuronas 28 junio, 2024
    Los científicos han descubierto una explicación biológica para los recuerdos a largo plazo, esos que acompañan a una persona prácticamente durante toda la vida. Revelaron que una molécula, KIBRA, sirve como “pegamento” para otras moléculas, consolidando así la formación de la memoria al activar y mantener una etiqueta sináptica persistente, que queda adherida a un […]
    Pablo Javier Piacente