Tendencias21
Teresa Fonseca: Fabricar una bomba de antimateria es imposible

Teresa Fonseca: Fabricar una bomba de antimateria es imposible

En el CERN de Ginebra no se fabrica antimateria, como se muestra en la película Angeles y Demonios, explica en la siguiente entrevista Teresa Fonseca, investigadora del laboratorio europeo de física de partículas. Aclara que en el CERN se estudian las partículas elementales, que producen casi tantas partículas como antipartículas, con la finalidad de comprender mejor el Universo. Algunos de los experimentos van encaminados especialmente a producir antiátomos para entender mejor las propiedades de la materia, concluye. Por Enrique Sacristán.

Teresa Fonseca: Fabricar una bomba de antimateria es imposible

¿Qué es exactamente la antimateria? ¿Existe realmente?

La materia del Universo está constituida por partículas elementales, y cada una de ellas tiene su correspondiente «antipartícula». Las dos existen y son exactamente iguales en todo, menos en su carga. Por ejemplo, la antipartícula del electrón es el antielectrón o positrón. Ambas poseen las mismas propiedades fundamentales (como la masa o el espín), pero el electrón tiene carga negativa y el positrón positiva. Estas antipartículas se generan en muy pocos procesos naturales, aunque en laboratorios como el CERN se producen de forma rutinaria para los experimentos.

El termino antimateria es un poco vago: puede referirse a las antipartículas que acabo de mencionar o a la “materia» compuesta hipotéticamente por estas antipartículas. Así, por comparar con un átomo normal, un antiátomo estaría formado por un núcleo de antineutrones y antiprotones (de carga negativa), en torno al cual orbitarían los antielectrones o positrones (con carga positiva). Con estos antiátomos se podría en principio formar antimateria semejante a nuestra materia, parecido a lo que representa una fotografía revelada respecto a su imagen en el negativo de la película. Teóricamente podríamos tener una mesa o una galaxia echas de antiátomos, aunque hoy en día no hay forma de hacerlo realidad, porque las antipartículas al contacto con la materia ordinaria se aniquilan generando energía

Si se destruyen mutuamente, ¿por qué el universo está constituido de materia?

Esa es una de las cuestiones que la comunidad científica trata de responder. ¿Por qué en los instantes posteriores al Big-Bang no se aniquilaron todas las partículas con sus correspondientes antipartículas, y se formó el universo de materia? Hay muchos experimentos que tratan de arrojar luz sobre el asunto. En los laboratorios de física de partículas, como el CERN, se trabaja sobre ello.

¿Se fabrica entonces antimateria en el CERN, como se indica en la película Ángeles y Demonios?

No, en absoluto. En el CERN no se fabrica antimateria como se muestra en la película, que al fin y al cabo es todo ficción. Además lo de «fabricar» antimateria me suena raro. Es como si estuviésemos hablando de fabricar latas de conserva o de coches. No funciona exactamente así.

En el CERN, y en todos los laboratorios de física de partículas, se producen antipartículas. Las técnicas que se usan para estudiar las partículas elementales producen casi tantas antipartículas como partículas, en parejas. El objetivo de estos estudios es entender cuáles son los componentes fundamentales de la materia, aquellas partículas que ya no se pueden dividir en otras más pequeñas, además de profundizar en las leyes que rigen sus interacciones. El conocimiento de estos procesos nos ayudará a comprender mejor el Universo.

Algunos de los experimentos van encaminados especialmente a producir antiátomos para entender mejor las propiedades de la materia. Por ejemplo, el experimento PS210 del CERN produjo los primeros átomos de antihidrógeno en 1995. En 2002 dos experimentos (ATHENA y ATRAP) consiguieron generar algunos miles de átomos de antihidrógeno. Aunque esto pueda sonar a mucho, realmente unos miles de átomos es muy poquito. Necesitarías 10.000.000.000.000.000 veces más para llenar un globo de cumpleaños con antihidrógeno.

¿Utiliza las antipartículas en su trabajo?

En mi caso trabajo en ATLAS, uno de los cuatro experimentos principales del LHC o Gran Colisionador de Hadrones, que volverá a funcionar el próximo otoño. Cuando realizamos los análisis tenemos partículas y antipartículas, pero éstas últimas son sólo herramientas que utilizamos para estudiar, no el objeto de estudio en sí mismo.

¿Y es fácil producir antimateria?

Producir antipartículas es relativamente «fácil». De hecho ocurre habitualmente en la naturaleza, en un tipo de desintegración radioactiva denominada “desintegración beta”. También se producen con los rayos cósmicos, que son partículas de altas energías que llegan a la atmósfera y al interaccionar con ella se producen cascadas de partículas.

Pero producir antiátomos es mucho muy difícil, y almacenarlos todavía más. Generar estructuras más complejas, como una mesa de antimateria, actualmente es imposible y de momento no conocemos ninguna forma para poderlo hacer en el futuro.

¿Por qué resulta tan difícil almacenar la antimateria?

Cuando las antipartículas o los antiátomos tocan la materia habitual se aniquilan emitiendo energía. Por tanto, almacenar antimateria es muy difícil. Para resolverlo, las antipartículas cargadas se almacenan utilizando «trampas electromagnéticas».

Las antipartículas neutras y los antiátomos son aun mucho más difíciles de almacenar, ya que es imposible usar campos eléctricos y magnéticos constantes para confinarlos, porque básicamente no les afectan. Se han planteado ideas como el uso de «botellas magnéticas» (campos magnéticos “inhomogéneos” que confinan las partículas) o «trampas ópticas», mediante el empleo de láseres.

¿Y se podría conseguir fácilmente una bomba de antimateria como la que aparece en la película?

Es imposible fabricar una bomba de antimateria. Es ciencia ficción y lo seguirá siendo durante muchos siglos. Para producir un cuarto de gramo de antimateria, como el que se señala en el libro, el CERN tendría que estar trabajando millones de años.

Con la tecnología actual no es posible producir esas cantidades de antimateria y almacenarla, y tampoco es previsible ningún avance en la tecnología que haga cambiar esta perspectiva en un futuro próximo. La gente debería preocuparse por las armas nucleares y químicas. La antimateria no es un problema a nivel bélico.

¿La antimateria tiene ya algún uso comercial?

Las antipartículas se producen rutinariamente en los escáneres PET (Positron Emission Tomography), la tomografía por emisión de positrones (los antielectrones), que se usa en diagnósticos médicos. Actualmente también se investiga la posibilidad de utilizar antiprotones en terapias contra el cáncer.

¿Y posibles usos futuros de la antimateria? ¿Podría ser la solución al problema energético, utilizándola de combustible, como en la nave Enterprise de Star Trek?

Los usos futuros están por inventar, y que yo sepa todavía no hay nada desarrollado. En cualquier caso, no va a ser la solución al problema energético a corto plazo. Cuesta mucha energía producir antipartículas y es muy difícil almacenarlas. La energía que se libera cuando se aniquilan por entrar en contacto con las partículas seria mucho menor que la invertida en todos los procesos anteriores. Además, tampoco existen mecanismos eficientes para poder utilizar esa energía liberada.

Información difundida por la agencia SINC

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • La IA podría ser el límite para todas las civilizaciones avanzadas en el Universo 10 abril, 2024
    Un nuevo estudio sugiere que el desarrollo de la Inteligencia Artificial (IA) hacia una Superinteligencia Artificial (ASI) podría explicar por qué no hemos detectado aún otras civilizaciones avanzadas en el cosmos, a pesar de la alta probabilidad de su existencia: en vez de supernovas, plagas, guerras nucleares o eventos climáticos extremos que hayan sido un […]
    Pablo Javier Piacente
  • Higgs ha podido dejar abierta la puerta a la Nueva Física 10 abril, 2024
    La muerte de Peter Higgs, que pasará a la historia como el descubridor del bosón que explica cómo se forma la materia, deja un legado en la historia de la física que todavía puede aportar algo más trascendente: la prueba definitiva de una Nueva Física más allá del Modelo Estándar.
    Eduardo Martínez de la Fe
  • Descubren neuronas "zombis" en el cerebro, que serían claves en el proceso de aprendizaje 9 abril, 2024
    Las neuronas "zombis" son unidades vivas pero funcionalmente alteradas, que parecen "dormidas" en determinadas situaciones: los investigadores han revelado que cumplen un papel fundamental en el cerebelo, concretamente en aspectos relativos a la forma en la cual aprendemos.
    Pablo Javier Piacente
  • La Luna se invirtió por completo hace más de 4 mil millones de años 9 abril, 2024
    Hace unos 4.220 millones de años, poco después de que la Luna se formara a partir de un trozo de la Tierra que se desprendió durante una colisión violenta a principios de la historia del Sistema Solar, nuestro satélite se dio vuelta y comenzó así una etapa clave de su desarrollo. Así lo ha comprobado […]
    Pablo Javier Piacente
  • Arte rupestre de hace 2.000 años podría representar música psicodélica 9 abril, 2024
    Aunque la música psicodélica moderna no nació hasta la década de 1960, las influencias psicodélicas se pueden encontrar en el arte rupestre de hace miles de años. Grabados precolombinos en piedra, de 2.000 años de antigüedad, reflejan figuras humanas bailando en estado de trance chamánico.
    Redacción T21
  • Descubren antiguas partículas de polvo espacial provenientes de otro sistema estelar 8 abril, 2024
    Los astrónomos han descubierto una rara partícula de polvo atrapada en un antiguo meteorito extraterrestre, que fue formado por una estrella distinta a nuestro Sol. El polvo se habría originado luego de una supernova: las partículas son como "cápsulas del tiempo celestes" y proporcionan una instantánea de la vida de su estrella madre.
    Pablo Javier Piacente
  • Un lejano mundo deja ver una increíble explosión de luz en sus cielos "metálicos" 8 abril, 2024
    Utilizando datos del Telescopio Espacial CHEOPS de la Agencia Espacial Europea (ESA), cuyo centro de operaciones científicas se localiza en la Universidad de Ginebra, en Suiza, un equipo internacional de científicos logró detectar por primera vez un extraño fenómeno lumínico denominado “gloria” en un exoplaneta: el estallido de luz se apreció en WASP-76b, un mundo […]
    Pablo Javier Piacente
  • El ordenador cuántico desembarca en el mundo universitario 8 abril, 2024
    La última computadora cuántica System One de IBM se ha instalado en el Instituto Politécnico Rensselaer (RPI) en Nueva York. Es la primera máquina cuántica de IBM instalada en un campus universitario de Estados Unidos. Una revolución en el mundo académico que impulsa la formación de un ecosistema cuántico global.
    Eduardo Martínez de la Fe
  • Los cocodrilos imitan a las ballenas antes de aparearse 7 abril, 2024
    Los cocodrilos cortejan a las hembras lanzando un chorro de agua al aire, tal como hacen las ballenas cuando salen a la superficie. A ellas les encantan también los silbidos y las burbujas que les dedican sus parejas antes de aparearse. Se está elaborando un diccionario de cocodrilos.
    Redacción T21
  • Los drones policiales se implantan en Estados Unidos 6 abril, 2024
    Chula Vista, un suburbio de San Diego, California, con una población de 275.000 habitantes, es una de las pocas ciudades estadounidenses que utiliza sistemáticamente drones para ayudar a la policía en caso de emergencia. En activo desde 2018, el sistema está sirviendo de referencia a otros Estados y tal vez otros países.
    Redacción T21