Tendencias21
El control cuántico revoluciona la química de diseño y la manipulación molecular

El control cuántico revoluciona la química de diseño y la manipulación molecular

La utilización de láseres de femtosegundos, capaces de producir una película a la misma velocidad con la que se mueven los átomos, ha permitido manipular la dinámica de una reacción química en tiempo real, es decir, a la vez que se está aplicando el pulso láser, así como resolver las ecuaciones dinámicas que gobiernan estos procesos. Toda una revolución tecnológica que permitirá en un futuro próximo el diseño de fármacos, si bien para ello será necesario todavía comprender cómo funcionan estos pulsos láser óptimos en su interacción con cada sistema molecular. Por Leticia González.

El control cuántico revoluciona la química de diseño y la manipulación molecular

¿Acaso no puede decirse que uno de los objetivos más importantes de la química es el de poder ejercer control sobre el resultado de una determinada reacción? Porque en toda reacción química existen productos que se desea obtener con un alto rendimiento y otros que, simplemente, se desea eliminar.

Pongamos por caso un ejemplo sencillo. Si un químico quisiera romper una molécula en los pedazos en los que está constituida, seguro que lo más sencillo sería calentarla con un mechero Bunsen hasta que sus partes se disociasen.

Ahora bien, si es un producto específico el que se desea obtener, hay que usar de forma inteligente factores externos, como la temperatura o la presión, para condicionar la reacción.

Esto es lo que se llama control pasivo, pues dichos factores preparan inicialmente la molécula que va a reaccionar de una u otra manera, sin intervenir activamente en la reacción.

Llegan los láseres

Cuando se inventaron los láseres en los años 60, se pensó que estos serían la herramienta ideal para controlar qué enlace podía romperse en una determinada molécula, obteniéndose así el producto deseado.

La idea era someter la molécula a un haz de luz coherente e intenso, cuya frecuencia fuese la misma que la frecuencia con la que el enlace deseado vibra. Desgraciadamente, los distintos enlaces que constituyen la molécula están fuertemente interrelacionados, y la energía aportada por el láser de forma específica a un determinado enlace se redistribuye rápidamente entre todos los demás, no consiguiéndose al final mas que una molécula “caliente”.

El secreto del control por medio de láseres está en aprovechar las propiedades cuánticas de un haz de luz; es decir los fenómenos de interferencia constructiva o destructiva de la luz.

Mientras tanto, la llegada de los láseres de femtosegundo ha revolucionado todo el concepto del control cuántico. Un femtosegundo corresponde a 0,000000000000001 segundos, una escala temporal que constituye precisamente la resolución mínima necesaria para observar una reacción química en tiempo real; es decir, según se está produciendo desde los reactivos hasta los productos, a modo de película en “cámara lenta”.

La cámara fotográfica más veloz

Las distancias que los átomos tienen que salvar cuando se da una reacción química son de unos pocos angstroms (un ángstrom equivale a 0,0000000001 metros).

Teniendo en cuenta que la velocidad de los átomos en fase gaseosa es del orden de centenares de metros por segundo, significa que el viaje completo de los núcleos atómicos en la reacción química se lleva a cabo en un tiempo récord de unos pocos cientos de femtosegundos.

Si queremos producir una película de lo que está ocurriendo desde los reactivos a los productos de la reacción, necesitamos tomar instantáneas fotográficas al menos a la misma velocidad con la que se mueven los átomos.

Esto es lo que hizo Ahmed H. Zewail, egipcio de nacimiento, en su laboratorio del California Institute of Technology en Pasadena (EE.UU.): observar por primera vez reacciones químicas en tiempo real con un láser de femtosegundo, lo que le valió el Premio Nobel de Quimica de 1999 [1], dando lugar al nacimiento de un nuevo campo de la Química, la Femtoquímica.

Control cuántico activo

Y si podemos observar átomos en movimiento por medio de láseres de femtosegundo ¿no se podrían utilizar estos para manipular las reacciones? La respuesta es sí.

La diferencia ahora es, que siendo los pulsos láser del mismo orden temporal que el movimiento de los núcleos, podemos manipular la dinámica de una reacción química en tiempo real; es decir, a la vez que se está aplicando el pulso láser.

Es lo que se llama control cuántico activo, en contraposición con el control pasivo del que hablábamos antes.

Rompiendo enlaces con pulsos láser a medida

Uno de los métodos más ingeniosos para controlar una reacción química por medio de pulsos láser ultracortos es utilizar algoritmos de auto-aprendizaje que dictan desde un ordenador y de forma iterativa cómo ha de configurarse el pulso láser para que éste, por ejemplo, rompa un determinado enlace de la molécula.

La luz de un pulso láser de femtosegundo no emite en una sola frecuencia, como el láser que se usa en las discotecas, sino que tiene un amplio espectro de colores, consecuencia del principio de incertidumbre de Heisenberg.

Este espectro se puede descomponer, haciendo pasar cada componente espectral del pulso por un cristal liquido, como el que se utiliza para construir las pantallas de una calculadora o de un ordenador portátil.

Pero este cristal en concreto tiene al menos 128 píxeles o canales, en los que por medio de un pequeño voltaje se puede inducir uno u otro recorrido óptico en cada uno de los 128 componentes en que hemos dividido el pulso de luz coherente

Control óptimo

¿Y qué componente espectral del pulso láser hace falta y cómo ha de estar manipulada para que un enlace se rompa y el resto no? A priori, es imposible predecirlo. Sin embargo, ¡el experimentador no necesita saberlo!

El cristal liquido esta modulado por un ordenador programado con un sistema de control óptimo basado en conceptos de evolución genética, que es capaz de optimizar cada fase del haz coherente, de forma iterativa.

El ordenador mismo comprueba si dicho pulso conduce al objetivo deseado, y de acuerdo al resultado obtenido en cada iteración, cambia el pulso hasta que se alcanza el máximo rendimiento del producto de reacción de interés.

La primera verificación experimental de tal procedimiento fue realizada por Gustav Gerber y sus colaboradores en la Universidad de Würzburg, usando una compleja molécula organometálica, en la que dos productos distintos podían ser maximizados o minimizados [2].

Tras la pista de pulsos óptimos

Se puede decir que estos pulsos láser diseñados a medida “resuelven” las ecuaciones dinámicas que gobiernan la reacción por sí solos, sin necesidad de ningún conocimiento previo sobre las fuerzas que mantienen unidos a los átomos.

Sin embargo, si en un futuro próximo se quisiese utilizar esta técnica, por ejemplo, para el diseño de fármacos, sería necesario comprender cómo funcionan dichos pulsos láser óptimos en su interacción con el sistema molecular de interés.

Con tal fin, el laboratorio de [Ludger Wöste]url: http://www.physik.fu-berlin.de/~ag-woeste/, de la Freie Universität Berlin, en cooperación con nuestro grupo de química teórica, ha efectuado un experimento similar al llevado a cabo en Würzburg.

Utilizando una molécula organometálica similar, y combinando los resultados experimentales con cuidadosos cálculos teóricos, ha sido posible “descifrar”, por vez primera, cuál es el mecanismo que el pulso láser óptimo obtenido experimentalmente induce en el sistema molecular, permitiendo la interpretación de la “melodía” del espectro de colores del pulso láser y, con ello, entendiéndose cuál es la dinámica interna de la reacción [3].

Se trata de un primer hito en la comprensión de la interacción de un pulso láser óptimo con la materia, pero hacen falta muchos más ejemplos para poder comprender en toda su extensión cómo funciona el control cuántico, y convertirlo así en un nuevo camino hacia la química de diseño, y la manipulación de sistemas moleculares de interés biológico o farmacológico.

Leticia González es Profesora Ayudante en la Freie Universität Berlin, Alemania. Ha participado como ponente en el congreso Quantum Control Of Light And Matter, celebrado en South Hadley, MA, entre el 3 y el 8 de agosto pasado.

Referencias:

[1] A. H. Zewail, Nobel Lecture.

[2] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle and G. Gerber: Control of Chemical Reactions by Feeback-Optimized Phase-Shaped Femtosecond Laser Pulses, Science, vol 282, p. 919 (1998).

[3] C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda and L. Wöste: Deciphering the Reaction Dynamics Underlying Optimal Laser Fields. Science, vol. 299, p. 536 (2003).

Tema relacionado:

Nuevas tecnologías para detener el tiempo consiguen filmar al cerebro mientras piensa

Leticia Gonzalez

Hacer un comentario

RSS Lo último de Tendencias21

  • En el caso de los caracoles, el huevo fue lo primero 14 abril, 2024
    Un caracol marino que primero fue ovíparo y evolucionó hacia la viviparidad revela que los saltos evolutivos ocurren gradualmente, a través de una serie de pequeños cambios.
    Redacción T21
  • Revelan el misterio del árbol tropical que camina 13 abril, 2024
    La denominada "palma caminante" o Socratea exorrhiza es un árbol de América Central y del Sur que según distintas versiones podría "caminar" y erguirse en determinadas situaciones: ahora, este mito parece haber sido resuelto bajo criterios científicos. Según los investigadores, aunque el árbol puede crecer rápidamente y crear nuevas raíces para lidiar con la pérdida […]
    Pablo Javier Piacente
  • Descubren 50 especies desconocidas para la ciencia en la exótica Isla de Pascua 12 abril, 2024
    Una expedición a la Cordillera de Salas y Gómez, frente a Rapa Nui, en el Océano Pacífico, documentó 160 especies animales que no se sabía que habitaban esta región de la misteriosa Isla de Pascua, en Chile. Además, descubrieron 50 criaturas que son absolutamente nuevas para la ciencia.
    Pablo Javier Piacente
  • El clima espacial podría generar un caos satelital sin precedentes 12 abril, 2024
    Los satélites en órbita terrestre baja (LEO) pueden perder su brújula cuando el clima espacial ofrece situaciones inesperadas. El problema afecta a la Estación Espacial Internacional, la estación espacial Tiangong de China y muchos satélites de observación de la Tierra. Los expertos sostienen que esta incertidumbre de posicionamiento aumenta el riesgo de colisiones orbitales peligrosas, […]
    Pablo Javier Piacente
  • La Inteligencia Artificial puede ser envenenada para proteger los derechos de autor 12 abril, 2024
    Una herramienta llamada Nightshade cambia imágenes digitales de manera casi imperceptible para el ojo humano, pero que se ven totalmente diferentes por los modelos de IA: una forma polémica de proteger las obras de arte de posibles infracciones de derechos de autor.
    Redacción T21
  • La acidez cerebral podría estar relacionada con múltiples trastornos neurológicos 11 abril, 2024
    Un estudio en animales a gran escala vincula los cambios en el pH del cerebro con problemas cognitivos de amplio alcance, ligados a patologías como el autismo o el Alzheimer, entre otras. Los científicos creen que los problemas metabólicos en el cerebro podrían estar directamente relacionados con una variedad de trastornos neuropsiquiátricos y neurodegenerativos.
    Pablo Javier Piacente
  • Cultivan organoides cerebrales con conexiones neuronales similares a las de un cerebro real 11 abril, 2024
    Un equipo internacional de investigadores ha desarrollado una técnica para conectar tejidos cultivados en laboratorio que imitan al cerebro humano de una manera que se asemeja a los circuitos neuronales del cerebro real. El "sistema" de mini cerebros interconectados podría revolucionar nuestra comprensión de las funciones cerebrales.
    Pablo Javier Piacente
  • Los Estados se exponen a condenas judiciales por inacción climática 11 abril, 2024
    Suiza es el primer Estado condenado judicialmente por no resolver el desafío climático y violar los derechos humanos de las personas mayores. Hace un año, 16 niños y jóvenes obtuvieron una sentencia condenatoria contra el Estado de Montana por destruir con sus leyes el medioambiente. Cualquier Estado puede ser denunciado si no preserva el ambiente en […]
    Eduardo Martínez de la Fe
  • Detectan extraños pulsos de radio procedentes de un magnetar que desconciertan a los científicos 10 abril, 2024
    Los astrónomos han detectado señales de radio inusuales procedentes de XTE J1810-197, un radiomagnetar o estrella de neutrones ultramagnética situada a 8.100 años luz de distancia de la Tierra, en la constelación de Sagitario. Los resultados son inesperados y sin precedentes: a diferencia de las señales de radio que se han detectado en otros magnetares, […]
    Pablo Javier Piacente
  • La IA podría ser el límite para todas las civilizaciones avanzadas en el Universo 10 abril, 2024
    Un nuevo estudio sugiere que el desarrollo de la Inteligencia Artificial (IA) hacia una Superinteligencia Artificial (ASI) podría explicar por qué no hemos detectado aún otras civilizaciones avanzadas en el cosmos, a pesar de la alta probabilidad de su existencia: en vez de supernovas, plagas, guerras nucleares o eventos climáticos extremos que hayan sido un […]
    Pablo Javier Piacente