Tendencias21
El control cuántico revoluciona la química de diseño y la manipulación molecular

El control cuántico revoluciona la química de diseño y la manipulación molecular

La utilización de láseres de femtosegundos, capaces de producir una película a la misma velocidad con la que se mueven los átomos, ha permitido manipular la dinámica de una reacción química en tiempo real, es decir, a la vez que se está aplicando el pulso láser, así como resolver las ecuaciones dinámicas que gobiernan estos procesos. Toda una revolución tecnológica que permitirá en un futuro próximo el diseño de fármacos, si bien para ello será necesario todavía comprender cómo funcionan estos pulsos láser óptimos en su interacción con cada sistema molecular. Por Leticia González.

El control cuántico revoluciona la química de diseño y la manipulación molecular

¿Acaso no puede decirse que uno de los objetivos más importantes de la química es el de poder ejercer control sobre el resultado de una determinada reacción? Porque en toda reacción química existen productos que se desea obtener con un alto rendimiento y otros que, simplemente, se desea eliminar.

Pongamos por caso un ejemplo sencillo. Si un químico quisiera romper una molécula en los pedazos en los que está constituida, seguro que lo más sencillo sería calentarla con un mechero Bunsen hasta que sus partes se disociasen.

Ahora bien, si es un producto específico el que se desea obtener, hay que usar de forma inteligente factores externos, como la temperatura o la presión, para condicionar la reacción.

Esto es lo que se llama control pasivo, pues dichos factores preparan inicialmente la molécula que va a reaccionar de una u otra manera, sin intervenir activamente en la reacción.

Llegan los láseres

Cuando se inventaron los láseres en los años 60, se pensó que estos serían la herramienta ideal para controlar qué enlace podía romperse en una determinada molécula, obteniéndose así el producto deseado.

La idea era someter la molécula a un haz de luz coherente e intenso, cuya frecuencia fuese la misma que la frecuencia con la que el enlace deseado vibra. Desgraciadamente, los distintos enlaces que constituyen la molécula están fuertemente interrelacionados, y la energía aportada por el láser de forma específica a un determinado enlace se redistribuye rápidamente entre todos los demás, no consiguiéndose al final mas que una molécula “caliente”.

El secreto del control por medio de láseres está en aprovechar las propiedades cuánticas de un haz de luz; es decir los fenómenos de interferencia constructiva o destructiva de la luz.

Mientras tanto, la llegada de los láseres de femtosegundo ha revolucionado todo el concepto del control cuántico. Un femtosegundo corresponde a 0,000000000000001 segundos, una escala temporal que constituye precisamente la resolución mínima necesaria para observar una reacción química en tiempo real; es decir, según se está produciendo desde los reactivos hasta los productos, a modo de película en “cámara lenta”.

La cámara fotográfica más veloz

Las distancias que los átomos tienen que salvar cuando se da una reacción química son de unos pocos angstroms (un ángstrom equivale a 0,0000000001 metros).

Teniendo en cuenta que la velocidad de los átomos en fase gaseosa es del orden de centenares de metros por segundo, significa que el viaje completo de los núcleos atómicos en la reacción química se lleva a cabo en un tiempo récord de unos pocos cientos de femtosegundos.

Si queremos producir una película de lo que está ocurriendo desde los reactivos a los productos de la reacción, necesitamos tomar instantáneas fotográficas al menos a la misma velocidad con la que se mueven los átomos.

Esto es lo que hizo Ahmed H. Zewail, egipcio de nacimiento, en su laboratorio del California Institute of Technology en Pasadena (EE.UU.): observar por primera vez reacciones químicas en tiempo real con un láser de femtosegundo, lo que le valió el Premio Nobel de Quimica de 1999 [1], dando lugar al nacimiento de un nuevo campo de la Química, la Femtoquímica.

Control cuántico activo

Y si podemos observar átomos en movimiento por medio de láseres de femtosegundo ¿no se podrían utilizar estos para manipular las reacciones? La respuesta es sí.

La diferencia ahora es, que siendo los pulsos láser del mismo orden temporal que el movimiento de los núcleos, podemos manipular la dinámica de una reacción química en tiempo real; es decir, a la vez que se está aplicando el pulso láser.

Es lo que se llama control cuántico activo, en contraposición con el control pasivo del que hablábamos antes.

Rompiendo enlaces con pulsos láser a medida

Uno de los métodos más ingeniosos para controlar una reacción química por medio de pulsos láser ultracortos es utilizar algoritmos de auto-aprendizaje que dictan desde un ordenador y de forma iterativa cómo ha de configurarse el pulso láser para que éste, por ejemplo, rompa un determinado enlace de la molécula.

La luz de un pulso láser de femtosegundo no emite en una sola frecuencia, como el láser que se usa en las discotecas, sino que tiene un amplio espectro de colores, consecuencia del principio de incertidumbre de Heisenberg.

Este espectro se puede descomponer, haciendo pasar cada componente espectral del pulso por un cristal liquido, como el que se utiliza para construir las pantallas de una calculadora o de un ordenador portátil.

Pero este cristal en concreto tiene al menos 128 píxeles o canales, en los que por medio de un pequeño voltaje se puede inducir uno u otro recorrido óptico en cada uno de los 128 componentes en que hemos dividido el pulso de luz coherente

Control óptimo

¿Y qué componente espectral del pulso láser hace falta y cómo ha de estar manipulada para que un enlace se rompa y el resto no? A priori, es imposible predecirlo. Sin embargo, ¡el experimentador no necesita saberlo!

El cristal liquido esta modulado por un ordenador programado con un sistema de control óptimo basado en conceptos de evolución genética, que es capaz de optimizar cada fase del haz coherente, de forma iterativa.

El ordenador mismo comprueba si dicho pulso conduce al objetivo deseado, y de acuerdo al resultado obtenido en cada iteración, cambia el pulso hasta que se alcanza el máximo rendimiento del producto de reacción de interés.

La primera verificación experimental de tal procedimiento fue realizada por Gustav Gerber y sus colaboradores en la Universidad de Würzburg, usando una compleja molécula organometálica, en la que dos productos distintos podían ser maximizados o minimizados [2].

Tras la pista de pulsos óptimos

Se puede decir que estos pulsos láser diseñados a medida “resuelven” las ecuaciones dinámicas que gobiernan la reacción por sí solos, sin necesidad de ningún conocimiento previo sobre las fuerzas que mantienen unidos a los átomos.

Sin embargo, si en un futuro próximo se quisiese utilizar esta técnica, por ejemplo, para el diseño de fármacos, sería necesario comprender cómo funcionan dichos pulsos láser óptimos en su interacción con el sistema molecular de interés.

Con tal fin, el laboratorio de [Ludger Wöste]url: http://www.physik.fu-berlin.de/~ag-woeste/, de la Freie Universität Berlin, en cooperación con nuestro grupo de química teórica, ha efectuado un experimento similar al llevado a cabo en Würzburg.

Utilizando una molécula organometálica similar, y combinando los resultados experimentales con cuidadosos cálculos teóricos, ha sido posible “descifrar”, por vez primera, cuál es el mecanismo que el pulso láser óptimo obtenido experimentalmente induce en el sistema molecular, permitiendo la interpretación de la “melodía” del espectro de colores del pulso láser y, con ello, entendiéndose cuál es la dinámica interna de la reacción [3].

Se trata de un primer hito en la comprensión de la interacción de un pulso láser óptimo con la materia, pero hacen falta muchos más ejemplos para poder comprender en toda su extensión cómo funciona el control cuántico, y convertirlo así en un nuevo camino hacia la química de diseño, y la manipulación de sistemas moleculares de interés biológico o farmacológico.

Leticia González es Profesora Ayudante en la Freie Universität Berlin, Alemania. Ha participado como ponente en el congreso Quantum Control Of Light And Matter, celebrado en South Hadley, MA, entre el 3 y el 8 de agosto pasado.

Referencias:

[1] A. H. Zewail, Nobel Lecture.

[2] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle and G. Gerber: Control of Chemical Reactions by Feeback-Optimized Phase-Shaped Femtosecond Laser Pulses, Science, vol 282, p. 919 (1998).

[3] C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda and L. Wöste: Deciphering the Reaction Dynamics Underlying Optimal Laser Fields. Science, vol. 299, p. 536 (2003).

Tema relacionado:

Nuevas tecnologías para detener el tiempo consiguen filmar al cerebro mientras piensa

Leticia Gonzalez

Hacer un comentario

RSS Lo último de Tendencias21

  • Las primeras células se agruparon de forma autónoma, tanto en la Tierra como en Marte 4 febrero, 2022
    La formación autónoma de poblaciones de protocélulas o células primitivas, utilizando la energía presente en superficies naturales, podría haber sido el punto de partida de una ruta que habría culminado en la transformación de entidades no vivas en organismos vivos, según un nuevo estudio. 
    Pablo Javier Piacente
  • El agua de la Tierra existía antes que surgiera nuestro planeta 4 febrero, 2022
    La composición química del agua que hoy disfrutamos en la Tierra y que es primordial para la vida existía desde mucho antes de la formación de nuestro planeta: se conformó gracias a depósitos de gas que incluían vapor de agua, en los primeros 200.000 años del Sistema Solar.
    Pablo Javier Piacente
  • ¿Existe un mundo paralelo oculto? Un experimento con neutrones parece sugerirlo 4 febrero, 2022
    Un experimento desarrollado con neutrones en el reactor nuclear de Grenoble ha descubierto nuevos indicios de que las partículas que desaparecen inexplicablemente podrían haber emigrado a un universo paralelo. Y pueden volver al nuestro.
    Eduardo Martínez de la Fe
  • Las lunas podrían ser la clave para que los planetas alberguen vida 3 febrero, 2022
    Las lunas podrían ser un elemento crucial para que un planeta tenga la capacidad de albergar vida: según un nuevo estudio, los satélites naturales deben ser grandes en proporción al tamaño del planeta anfitrión, para que las posibilidades de hallar vida se incrementen.
    Pablo Javier Piacente
  • El Sol produce grietas en la magnetosfera de la Tierra 3 febrero, 2022
    El campo magnético de la Tierra o magnetosfera nos protege del viento solar y de los efectos perjudiciales del clima espacial, pero no siempre ofrece una protección completa. Un mecanismo en la magnetosfera permite que las partículas solares se deslicen a través de esta primera línea de defensa, generando un proceso que puede debilitar ciertas […]
    Pablo Javier Piacente
  • El grafeno sirve para generar materia y antimateria a partir del vacío 3 febrero, 2022
    El grafeno puede utilizarse para imitar la producción de partículas y antipartículas que se produce en el vacío que rodea a las estrellas de neutrones. Genera electrones supralumínicos que proporcionan una corriente eléctrica superior a la permitida por la física cuántica de la materia condensada.
    Redacción T21
  • Muchos exoplanetas similares a la Tierra pueden tener vida 3 febrero, 2022
    Una investigación ha descubierto que muchos de los 1.500 exoplanetas similares a la Tierra que han sido identificados pueden tener poderosos campos magnéticos que los protegen de la radiación cósmica y favorecen las condiciones para la vida.
    Eduardo Martínez de la Fe
  • Las bacterias intestinales practican sexo para obtener vitamina B12 2 febrero, 2022
    Se sabía que las bacterias intestinales necesitan vitamina B12, pero una nueva investigación muestra que estas bacterias transfieren genes a través del "sexo" para adquirir sus vitaminas. Los microbios intestinales beneficiosos comparten la capacidad de adquirir este preciado recurso entre sí a través de un proceso llamado "sexo bacteriano".
    Pablo Javier Piacente
  • La materia oscura podría generar ondas capaces de ser detectadas 2 febrero, 2022
    La materia oscura macroscópica que viaja a través de las estrellas podría producir ondas de choque potencialmente detectables, según una nueva investigación. La nueva técnica se concentra en los denominados “asteroides oscuros” y las ondas de choque que generan.
    Pablo Javier Piacente
  • Un segundo asteroide troyano acompaña a la Tierra en su órbita alrededor del Sol 2 febrero, 2022
    Los astrónomos han confirmado que en el llamado punto de Lagrange L4, un segundo asteroide troyano orbita alrededor del Sol en la misma trayectoria que la Tierra. Aunque estaba allí desde hace 600 años, fue descubierto en 2020 sin que hasta ahora haya podido certificarse su existencia.
    Redacción T21