Tendencias21

Aprendizaje profundo de máquinas para navegar en carretera

Investigadores de la Universidad de Cambridge (Reino Unido) han diseñado dos técnicas de aprendizaje profundo de máquinas que permiten reconocer el entorno con mucha precisión y a bajo coste, lo que las hace útiles para la navegación por carretera y los coches sin conductor. Además, funcionan en lugares donde el GPS no lo hace (como interiores o túneles).

Aprendizaje profundo de máquinas para navegar en carretera

Dos tecnologías que utilizan técnicas de aprendizaje profundo para ayudar a las máquinas a ver y reconocer su ubicación y el entorno se podrían utilizar para el desarrollo de los coches sin conductor y la robótica autónoma -y se pueden utilizar en una cámara normal o un teléfono inteligente.

Los sistemas funcionan allá donde no lo hace el GPS, e identifican los distintos componentes de un escenario de carretera en tiempo real en una cámara normal o un teléfono inteligente, realizando el mismo trabajo que sensores que cuestan decenas de miles de euros.

Los sistemas, distintos pero complementarios, han sido diseñados por investigadores de la Universidad de Cambridge (Reino Unido) y hay muestras disponibles en línea. Aunque los sistemas no pueden de hecho controlar un coche sin conductor, la capacidad de hacer a una máquina «ver» e identificar con precisión dónde está y lo que está viendo es una parte vital del desarrollo de vehículos y robótica autónomos.

El primer sistema, denominado SegNet, puede tomar una imagen de una escena de la calle que no ha visto antes y clasificarla, ordenando objetos en 12 categorías diferentes -como carreteras, señales de tráfico, peatones, edificios y ciclistas- en tiempo real. Puede tratar entornos luminosos, oscuros y nocturnos, y etiqueta más del 90% de los píxeles correctamente. Sistemas anteriores que utilizaban costosos sensores basados ​​en láser o radar no han podido llegar a este nivel de precisión funcionando en tiempo real.

Los usuarios pueden visitar el sitio web de SegNet y subir una imagen o buscar cualquier ciudad o pueblo del mundo, y el sistema etiquetará todos los componentes de la escena de carretera. El sistema ha sido probado con éxito tanto en carreteras de ciudad como en autopistas.

Aprendiendo con el ejemplo

Para los coches sin conductor actualmente en desarrollo, los sensores de radar son caros -de hecho, a menudo cuestan más que el propio vehículo. En contraste con ellos, que reconocen los objetos a través de una mezcla de radar y LIDAR (una tecnología de teledetección), SegNet aprende con el ejemplo -fue entrenado por un laborioso grupo de estudiantes de grado de Cambridge, que marcaron de forma manual cada píxel de 5.000 imágenes, tardando unos 30 minutos en completar cada una. Una vez que el etiquetado se terminó, los investigadores tardaron dos días en «entrenar» al sistema antes de que se pusiera en acción.

«Es muy bueno reconociendo cosas en una imagen, ya que ha tenido mucha práctica», dice Alex Kendall, estudiante de doctorado en el Departamento de Ingeniería. «Además, podemos afinar el sistema de muchas formas diferentes para que siga mejorando.»

SegNet fue entrenado principalmente en carreteras y entornos urbanos, por lo que todavía le queda algo de aprendizaje para entornos rurales, nevados o desérticos -a pesar de que ha obtenido buenos resultados en las pruebas iniciales para estos entornos.

El sistema todavía no está en el punto de poder ser usado para controlar un automóvil o camión, pero podría ser utilizado como sistema de alerta, similar a las tecnologías anti-colisión disponibles en la actualidad en algunos coches de pasajeros.

«La visión es nuestros sentido más poderoso y los coches sin conductor también tendrán que ver», dice el profesor Roberto Cipolla, que dirigió la investigación, en la nota de prensa de Cambridge. «Pero enseñar a una máquina a ver es mucho más difícil de lo que parece.»

De niños, aprendemos a reconocer los objetos a través del ejemplo -si se nos muestra un coche de juguete varias veces, aprendemos a reconocer tanto ese coche específico como otros coches similares, como el mismo tipo de objeto. Pero con una máquina, no es tan simple como mostrarle un solo coche y que luego sea capaz de reconocer todos los diferentes tipos de vehículos. Las máquinas hoy aprenden bajo supervisión: a veces a través de miles de ejemplos etiquetados.

Hay tres preguntas claves tecnológicas que deben ser respondidas para diseñar vehículos autónomos: ¿Dónde estoy, qué me rodea y qué hago ahora. SegNet aborda la segunda cuestión, mientras que un sistema separado pero complementario responde a la primera mediante el uso de imágenes para determinar tanto la ubicación como la orientación de forma precisa.

Localización

El sistema de localización diseñado por Kendall y Cipolla se ejecuta en una arquitectura similar a SegNet, y es capaz de localizar a un usuario y determinar su orientación a partir de una imagen de un solo color en una escena urbana llena de cosas.

El sistema es mucho más preciso que el GPS y funciona en lugares donde el GPS no, como en interiores, en túneles o en ciudades donde no se dispone de una señal GPS fiable.

Se ha probado a lo largo de un tramo de un kilómetro de la calle King’s Parade, en el centro de Cambridge, y es capaz de determinar tanto la ubicación como la orientación con pocos metros y unos pocos grados de precisión, que es mucho más que la del GPS -una cuestión vital para los coches sin conductor. Los usuarios pueden probar el sistema por sí mismos aquí.

El sistema de localización utiliza la geometría de una escena para conocer su ubicación exacta, y es capaz de determinar, por ejemplo, si está mirando hacia el este o el oeste de un edificio, aunque las dos partes parezcan idénticas.

«El trabajo en el campo de la inteligencia artificial y la robótica ha tenido mucho éxito en los últimos años», dice Kendall. «Pero lo bueno de nuestro grupo es que hemos desarrollado tecnología que utiliza el aprendizaje profundo para determinar donde estás y lo que te rodea.»

«En el corto plazo, es más probable ver este tipo de sistema en un robot doméstico -como una aspiradora robótica, por ejemplo», dice Cipolla. «Pasará tiempo antes de que los conductores pueden confiar plenamente en un vehículo autónomo, pero cuanto más eficaces y precisas podamos hacer estas tecnologías, más cerca estaremos de la adopción generalizada de los coches sin conductor y de otros tipos de robótica autónoma.»

Los investigadores presentaron los detalles de las dos tecnologías en la Conferencia Internacional sobre Visión por Computador, en Santiago, Chile.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Las hormigas invasoras hacen autostop para encontrar un nuevo hogar 28 junio, 2024
    Se sabe que los insectos son especialistas en utilizar todo tipo de formas de transporte para atravesar amplias distancias, pero un nuevo estudio ha revelado que las hormigas también dominan el autostop: estos insectos sociales recogen a toda la familia, incluida su reina, y se suben al primer vehículo que encuentran para emprender un viaje […]
    Pablo Javier Piacente
  • Los recuerdos imborrables se adhieren a algunas neuronas 28 junio, 2024
    Los científicos han descubierto una explicación biológica para los recuerdos a largo plazo, esos que acompañan a una persona prácticamente durante toda la vida. Revelaron que una molécula, KIBRA, sirve como “pegamento” para otras moléculas, consolidando así la formación de la memoria al activar y mantener una etiqueta sináptica persistente, que queda adherida a un […]
    Pablo Javier Piacente
  • Descubren un boquete de seguridad que afecta a todos los dispositivos y conexiones a Internet 28 junio, 2024
    Una vulnerabilidad de seguridad, que afecta a todas las conexiones y dispositivos de Internet, puede eludir firewalls, VPN y otras herramientas de seguridad y permite espiar a cualquier persona, sin necesidad de código malicioso o acceso al dispositivo. No existe una manera fácil de solucionar este problema de seguridad.
    Redacción T21
  • Crean bebés digitales para mejorar la atención sanitaria 27 junio, 2024
    Un equipo de investigadores desarrolló modelos informáticos que simulan los procesos metabólicos únicos de cada bebé: los “gemelos digitales” pueden ayudar a comprender mejor las enfermedades metabólicas raras y otros desafíos que enfrentan los bebés humanos durante los primeros 6 meses de vida, que son críticos para su crecimiento posterior.
    Pablo Javier Piacente
  • La similitud de los vientos espaciales con los de la Tierra 27 junio, 2024
    Los científicos han descubierto corrientes en el espacio que reflejan de manera inquietante los vientos que giran cerca de la superficie de la Tierra, lo que sugiere fuerzas ocultas que los conectan. Este nuevo conocimiento podría proporcionarnos una mejor comprensión de los sistemas ambientales que circulan alrededor del globo y mejorar los pronósticos meteorológicos espaciales […]
    Pablo Javier Piacente
  • Los archivos geológicos anticipan nuestro futuro climático 27 junio, 2024
    Hace 56 millones de años, la erosión del suelo se cuadruplicó en el planeta debido a las fuertes lluvias y las inundaciones de los ríos provocadas por un calentamiento global muy similar al que conocemos hoy.
    Eduardo Martínez de la Fe
  • Ya es posible transmitir el tacto a través de Internet 26 junio, 2024
    Un nuevo estándar para la compresión y transmisión del sentido del tacto mediante Internet sienta las bases para la telecirugía, la teleconducción y nuevas experiencias de juego en línea, entre otras aplicaciones. El flamante estándar HCTI (Haptic Codecs for the Tactile Internet) es para el “tacto digital” lo que son JPEG, MP3 y MPEG para […]
    Pablo Javier Piacente
  • Las primeras muestras de la cara oculta de la Luna ya están en la Tierra 26 junio, 2024
    La cápsula de reingreso de la sonda Chang'e-6 de China, que transporta hasta dos kilogramos de materiales extraídos y perforados de la cuenca más antigua de la Luna ubicada en su lado oscuro, aterrizó este martes 25 de junio en la región de Mongolia Interior y fue rápidamente recuperada, según informó la Administración Nacional del […]
    Pablo Javier Piacente
  • La Tierra tendrá dos soles dentro de 1,3 millones de años y durante 60.000 años 26 junio, 2024
    Dentro de 1,3 millones de años, la Tierra tendrá una especie de segundo sol porque la estrella Gliese 710 se acercará a 1,1 años luz de la Tierra y la veríamos del mismo tamaño que Júpiter. Lo malo es que esa alteración cósmica puede provocar un episodio en nuestro planeta como el que acabó con […]
    Eduardo Martínez de la Fe
  • China descubre grafeno natural en la Luna 25 junio, 2024
    Investigadores chinos han descubierto recientemente grafeno natural de escasas capas por primera vez en la Luna, a partir de las muestras traídas a la Tierra por la sonda Chang'e 5. El hallazgo proporciona nuevos conocimientos sobre las actividades geológicas, la historia evolutiva y las características ambientales de la Luna.
    Pablo Javier Piacente