Tendencias21
Circuitos cuánticos podrían teleportar información a la velocidad de la luz

Circuitos cuánticos podrían teleportar información a la velocidad de la luz

Los circuitos cuánticos podrían replicar la dinámica de los agujeros negros y teleportar información a la velocidad de la luz. Posible revolución en puertas para la computación cuántica.

Un grupo de físicos liderado por Sepehr Ghazi Nezami, del Instituto Tecnológico de California (Caltech), está trabajando en un sistema original y complejo para mejorar la computación cuántica.

La computación cuántica se basa en los principios de la mecánica cuántica y permite tratar la información de una forma más potente y segura que la computación clásica.

Básicamente consiste en aprovechar una de las propiedades de las partículas elementales, el entrelazamiento cuántico, para enviar información de forma instantánea y en tiempo real, sin necesidad de que la información recorra ningún trayecto físico.

El entrelazamiento cuántico es uno de los fenómenos más desconcertantes de la mecánica cuántica: cuando dos partículas elementales se entrelazan, experimentan un vínculo inexplicable que se mantiene incluso si están separadas por miles de kilómetros.

Cualquier información que introduzcamos en una de ellas, que por ejemplo está en Madrid, aparecerá instantáneamente en la otra que está en Nueva York. El entrelazamiento cuántico da lugar a la teleportación de la información.

Esa es la potencia más significativa de la computación cuántica, además de la seguridad: como la información no recorre trayecto, nadie puede piratearla.

Estado actual

La computación cuántica está todavía en estado embrionario, si bien ya se usa para investigaciones científicas y comerciales de forma puntual, para proyectos específicos.

Una de las limitaciones de la actual computación cuántica es que, cuando se envía información a través del entrelazamiento cuántico, se altera en el proceso y necesita ser decodificada cuando “llega” a su destino.

Por este motivo, la información debe viajar con su correspondiente llave para que, en el otro extremo del mundo, alguien pueda descifrar el mensaje. Eso impide que pueda viajar a la velocidad de la luz.

Lo que pretenden los físicos del Caltech, según explica la revista Quanta, es superar esta limitación: enviar la información en entrelazamiento cuántico sin necesidad de decodificarla.

Para ello se proponen reproducir en circuitos cuánticos  algo sorprendente: la dinámica de los agujeros negros.

Agujeros negros como de gusano

Los agujeros negros se forman en el universo cuando algunas estrellas mueren, se contraen y explotan.

En su interior la gravedad es tan potente que nada, ni la materia ni la radiación, pueden evitar ser engullidos.

Una propiedad atribuida teóricamente a los agujeros negros es que, si estuvieran en estado de entrelazamiento cuántico, podrían transmitir información sin necesidad de destruirla.

Eso supondría que los agujeros negros se comportarían como un agujero de gusano, una especie de pasadizo secreto que existiría en el universo y permitiría recorrer en un instante enormes distancias espaciales e incluso viajar a través del tiempo.

Teleportación a la velocidad de la luz

Es decir, hipotéticamente, dos agujeros negros entrelazados cuánticamente podrían enviar y recibir información sin necesidad de que sea alterada: llegaría al final de su trayecto lista para ser utilizada.

Los físicos del Caltech no pretenden construir agujeros negros en laboratorio, sino replicar sus propiedades en circuitos cuánticos.

Si la hipótesis de que los agujeros negros entrelazados pueden enviar información limpia se confirma, estos circuitos podrán intercambiar datos sin codificar y sin llaves.

Toda una revolución en la computación cuántica: permitiría la teleportación más rápida jamás alcanzada. Tal vez a la velocidad de la luz.

Y esto no sería lo más destacado de esta investigación.

Si la idea se confirma, nos indicaría que estamos llegando a la Teoría del Todo, que concilia la mecánica cuántica con la relatividad general que describe la gravedad.

El viejo sueño de Newton, Einstein o Hawking estaría al alcance de la mano.

Referencia

Quantum Gravity in the Lab: Teleportation by Size and Traversable Wormholes. Adam R. Brown et al. arXiv: 1911.06314v1.

Eduardo Martínez de la Fe

Eduardo Martínez de la Fe, periodista científico, es el Editor de Tendencias21.

Hacer un comentario

RSS Lo último de Tendencias21

  • Una nueva IA ha identificado 600 millones de proteínas de organismos desconocidos 7 noviembre, 2022
    En solo 15 días, una nueva Inteligencia Artificial (IA) desarrollada por la empresa Meta, la empresa matriz de Facebook e Instagram, ha logrado predecir las estructuras desconocidas de más de 600 millones de proteínas pertenecientes a virus, bacterias y otros microbios. El programa, llamado ESMFold, usó un modelo readaptado, que fue originalmente diseñado para decodificar […]
    Pablo Javier Piacente
  • Descubren a 1.560 años luz el agujero negro más cercano a la Tierra 7 noviembre, 2022
    Los astrónomos han descubierto, a 1.560 años luz de nuestro planeta, el agujero negro más cercano a la Tierra. No emite rayos X ni “devora” lentamente a su estrella. Es 10 veces más masivo que nuestro Sol y se encuentra a la misma distancia de su estrella que la Tierra del astro rey.
    Pablo Javier Piacente
  • Nuevos fósiles de otro gran dinosaurio descubiertos en Teruel 7 noviembre, 2022
    Excavaciones paleontológicas llevadas a cabo en el yacimiento de Riodeva han descubierto nuevos restos de un gran dinosaurio saurópodo, con características muy diferentes a las que posee el mayor de los dinosaurios descrito en Europa, Turiasaurus, también procedente de este municipio de Teruel.
    Redacción T21
  • Resuelto un enigma de siglos sobre la evolución de la vida en la Tierra 7 noviembre, 2022
    Durante el período Cámbrico, hace unos 500 millones de años, surgieron en la Tierra los primeros animales que desarrollaron esqueletos duros, según análisis de fósiles intactos descubiertos en China hace cinco años.
    Redacción T21
  • Una cumbre cuántica se inicia la próxima semana en Chicago 7 noviembre, 2022
    La Universidad de Chicago acoge la semana próxima la quinta cumbre cuántica, que reúne a los líderes académicos, gubernamentales y de la industria en torno a los temas de vanguardia en este campo estratégico de conocimiento.
    Redacción T21
  • El uso de la tecnología creará otro tipo de ser humano en el año 3000 7 noviembre, 2022
    El uso intensivo de la tecnología va a cambiar la apariencia del ser humano cuando lleguemos al año 3000: seremos jorobados, nuestras manos serán garras, cada ojo tendrá tres párpados y el cerebro será más pequeño y menos inteligente.
    Redacción T21
  • El WiFi se puede utilizar para ver a través de las paredes 6 noviembre, 2022
    Un dispositivo económico y accesible incorporado a un dron puede sobrevolar un banco y rastrear los movimientos de los guardias de seguridad siguiendo la ubicación de sus teléfonos o relojes inteligentes. Ideal para un atraco perfecto.
    UW/T21
  • Más de 12.000 variables genéticas influyen en la altura de una persona 6 noviembre, 2022
    Un análisis de más de 4 millones de pruebas genéticas ha identificado más de 12.000 variables que influyen en la altura de una persona: explica con todo detalle por qué las personas son altas o bajas y detalla cómo la heredabilidad está vinculada a regiones genómicas específicas.
    Redacción T21
  • Descubrimiento histórico en Suecia 6 noviembre, 2022
    Los arqueólogos submarinos han descubierto un naufragio largamente buscado en el lecho marino cerca de Estocolmo. Se trata del Äpplet, de casi 400 años de antigüedad, que fue uno de los buques de guerra más grandes de su tiempo. Había sido botado en 1629 y hundido en 1659. Tiene su historia.
    Redacción T21
  • Tener hijos cambia permanentemente los huesos de las madres de los primates 5 noviembre, 2022
    Las madres de los primates tienen huesos que están menos concentrados en magnesio, calcio y fósforo que otras hembras debido al embarazo y la lactancia. El esqueleto responde dinámicamente a los cambios en el estado reproductivo, según un estudio.
    NYU/T21