Tendencias21

Nuevo sistema para obtener energía renovable de la unión de mares y ríos

Científicos de la Escuela Politécnica Federal de Lausana (Suiza) han desarrollado un sistema que genera electricidad mediante ósmosis, con una gran eficiencia. Aprovecha el intercambio de iones entre el agua de mar y el agua dulce, con una nueva membrana de sólo tres átomos de espesor. Esta tecnología podría usarse en los estuarios, allá donde los ríos se juntan con el mar, para obtener energía renovable.

Nuevo sistema para obtener energía renovable de la unión de mares y ríos

Investigadores de la Escuela Politécnica Federal de Lausana (EPFL, Suiza) han desarrollado un sistema que genera electricidad a partir de ósmosis con una eficiencia sin precedentes. Su trabajo, que aparece en Nature, utiliza el agua de mar, agua dulce, y un nuevo tipo de membrana de sólo tres átomos de espesor.

Los defensores de la energía limpia pronto tendrán una nueva fuente para añadir a la energía solar, eólica e hidroeléctrica: la energía osmótica. O más concretamente, la energía generada por un fenómeno natural que se produce cuando el agua dulce entra en contacto con el agua de mar a través de una membrana.

Investigadores del Laboratorio de Biología de Nanoescala de la EPFL han desarrollado un sistema de generación de energía osmótica que ofrece rendimientos nunca antes vistos.

El concepto es bastante simple. Una membrana semipermeable separa dos fluidos con diferentes concentraciones de sal. Los iones de sal viajan a través de la membrana hasta que las concentraciones de sal en los dos fluidos alcanzan el equilibrio. Ese fenómeno es precisamente la ósmosis.

Si el sistema se utiliza con agua de mar y agua dulce, los iones de sal en el agua de mar pasan a través de la membrana hacia el agua dulce hasta que ambos líquidos tienen la misma concentración de sal. Y puesto que un ion es simplemente un átomo con una carga eléctrica, el movimiento de los iones de sal puede aprovecharse para generar electricidad.

El sistema de la EPFL consta de dos compartimentos llenos de líquido separados por una membrana delgada hecha de disulfuro de molibdeno. La membrana tiene un pequeño agujero, o nanoporo, a través del cual pasan los iones del agua de mar hacia el agua fresca hasta que las concentraciones de sal de los dos fluidos son iguales. A medida que los iones pasan a través del nanoporo, sus electrones se transfieren a un electrodo -que es lo que se utiliza para generar una corriente eléctrica.

Gracias a sus propiedades la membrana permite que los iones con carga positiva pasen a través de lla, mientras que rechaza la mayoría de los cargados negativamente. Eso crea tensión entre los dos líquidos a medida que uno acumula carga positiva y el otro carga negativa. Esta tensión es lo que hace que la corriente generada por la transferencia de iones fluya.

Nanoporos

«Tuvimos que fabricar primero y luego investigar el tamaño óptimo del nanoporo. Si es demasiado grande, los iones negativos pueden pasar a través de él y la tensión resultante sería demasiado baja. Si es demasiado pequeño, no pasan suficientes iones a través de él y la corriente sería demasiado débil», dice Jiandong Feng, autor principal de la investigación, en la nota de prensa de la EPFL.

Lo que diferencia el sistema es su membrana. En estos tipos de sistemas, la corriente aumenta con una membrana más fina. Y la membrana de la EPFL tiene sólo unos pocos átomos de espesor. El material de qué está hecha -disulfuro de molibdeno- es ideal para la generación de una corriente osmótica. «Esta es la primera vez que se utiliza un material de dos dimensiones para este tipo de aplicación», dice Aleksandra Radenovic, jefe del Laboratorio de Biología a Nanoescala.

El potencial del nuevo sistema es enorme. De acuerdo con sus cálculos, una membrana de 1 metro cuadrado con un 30% de su superficie cubierta por nanoporos debe ser capaz de producir 1 megavatio de electricidad -lo suficiente para alimentar 50.000 bombillas de bajo consumo estándar-. Y puesto que el disulfuro de molibdeno (MoS2) es fácil de encontrar en la naturaleza o se puede producir por deposición química de vapor, el sistema sería escalable para la generación de energía a gran escala. El principal desafío para conseguirlo es encontrar la manera de hacer poros relativamente uniformes.

Hasta ahora, los investigadores han trabajado sobre una membrana con un solo nanoporo, con el fin de comprender exactamente lo que estaba pasando. »Desde una perspectiva de ingeniería, el sistema de un solo nanoporos es ideal para mejorar nuestra comprensión fundamental de estos procesos y proporcionar información útil para la comercialización a nivel industrial», dice Jiandong Feng.

Los investigadores fueron capaces de hacer funcionar un nanotransistor con la corriente generada por un solo nanoporo: un nanosistema autoalimentado. Los transistores de MoS2 de una sola capa y baja potencia se fabricaron en colaboración con el equipo de Andras Kis en la EPFL, mientras que se realizaron simulaciones de dinámica molecular en la Universidad de Illinois en Urbana-Champaign (EE.UU.).

Estuarios

La investigación de la EPFL es parte de una tendencia en crecimiento. Durante los últimos años, los científicos de todo el mundo han estado desarrollando sistemas que aprovechan la energía osmótica para generar electricidad. Hay proyectos piloto en lugares como Noruega, Países Bajos, Japón y Estados Unidos para generar energía en los estuarios, donde los ríos desembocan en el mar.

Por ahora, las membranas utilizadas en la mayoría de los sistemas son orgánicos y frágiles, y proporcionan bajos rendimientos. Algunos sistemas utilizan el movimiento del agua, en lugar de iones, para alimentar turbinas que a su vez producen electricidad.

Una vez que los sistemas se vuelvan más robustos, la energía osmótica podrá desempeñar un papel importante en la generación de energía renovable. Mientras que los paneles solares requieren luz solar adecuada y turbinas eólicas viento adecuado, la energía osmótica se puede producir casi a cualquier hora del día o de la noche -siempre que haya un estuario cerca.

Referencia bibliográfica:

Jiandong Feng, Michael Graf, Ke Liu, Dmitry Ovchinnikov, Dumitru Dumcenco, Mohammad Heiranian, Vishal Nandigana, Narayana R. Aluru, Andras Kis, Aleksandra Radenovic: Single-layer MoS2 nanopores as nanopower generators. Nature (2016). DOI: 10.1038/nature18593.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Google habría impulsado una IA experimental involucrada en la muerte de un adolescente 21 marzo, 2025
    Plataformas respaldadas por gigantes tecnológicos como Google han introducido chatbots de IA interactivos dirigidos a niños y adolescentes, abriendo fuertes debates sobre su impacto en el desarrollo infantil. En concreto, la aplicación experimental Character.AI ha sido objeto de demandas legales por parte de distintas familias, que alegan que sus hijos fueron expuestos a contenidos perjudiciales […]
    Pablo Javier Piacente / T21
  • Sudáfrica y China logran una conexión cuántica satelital récord de casi 13.000 kilómetros 21 marzo, 2025
    Un equipo internacional de científicos ha establecido una conexión satelital cuántica histórica entre Sudáfrica y China, cubriendo una distancia récord de 12.900 kilómetros. Gracias al fenómeno del entrelazamiento cuántico, esta tecnología garantiza comunicaciones absolutamente seguras frente a cualquier intento de espionaje.
    Redacción T21
  • Los tribunales no reconocen derechos de autor a la Inteligencia Artificial 21 marzo, 2025
    Un tribunal de apelaciones en Estados Unidos ha puesto límites a la creatividad de las máquinas: las obras generadas exclusivamente por inteligencia artificial no pueden ser protegidas por derechos de autor. El fallo reafirma que la ley actual requiere la participación humana para garantizar la protección legal de una obra.
    Redacción T21
  • Microsoft e Inait revolucionan la Inteligencia Artificial con cerebros digitales casi humanos 21 marzo, 2025
    Microsoft ha unido fuerzas con la startup suiza Inait para desarrollar sistemas de IA inspirados en el cerebro humano. Esta colaboración busca crear modelos que no solo aprenden de datos, sino que también razonan como el cerebro humano.
    Redacción T21
  • Musk fija rumbo a Marte: las primeras misiones no tripuladas despegarán en 2026 21 marzo, 2025
    El camino hacia la conquista de Marte ya tiene calendario: SpaceX enviará en 2026 cinco misiones no tripuladas hacia el planeta rojo, destinadas a probar la fiabilidad del sistema Starship en aterrizajes. Si culminan con éxito, las históricas misiones tripuladas podrían despegar en menos de una década.
    Redacción T21
  • Desvelan la primera luz que encendió el Universo y su evolución posterior 21 marzo, 2025
    El Telescopio de Cosmología de Atacama (ACT) ha compilado el mapa más detallado que hemos visto hasta hoy del fondo cósmico de microondas, la tenue luz que impregna el Universo desde solo 380.000 años después del Big Bang y cuyos ecos pueden apreciarse en la actualidad. La imagen obtenida es lo más parecido a la […]
    Redacción T21
  • El telescopio Webb detecta dióxido de carbono en exoplanetas a 130 años luz 21 marzo, 2025
    Un nuevo hallazgo del JWST nos acerca un poco más a la comprensión de los mecanismos de formación de otros sistemas planetarios diferentes al nuestro, además de arrojar luz sobre la composición química de las atmósferas de los exoplanetas, un punto crucial en la búsqueda de alguna forma de vida extraterrestre.
    Pablo Javier Piacente / T21
  • Detectan misteriosas señales de radio provenientes de una estrella muerta y su compañera 21 marzo, 2025
    Los astrónomos han rastreado la fuente de una extraña señal de radio proveniente del espacio profundo, que se repite exactamente cada dos horas. Se trata del ritmo al que chocan los campos magnéticos de un par de estrellas que se mueven en una órbita muy apretada, a unos 1.600 años luz de distancia de la […]
    Pablo Javier Piacente / T21
  • "Microrrayos" en gotitas de agua habrían producido moléculas fundamentales para el surgimiento de la vida 21 marzo, 2025
    La síntesis de moléculas necesarias para la aparición de la vida podría haberse originado por "microrrayos" en gotitas de agua. Según un nuevo estudio, la formación de compuestos orgánicos con enlaces carbono-nitrógeno a partir de moléculas de gas podría haber sido un posible mecanismo para crear los componentes básicos de la vida en la Tierra […]
    Pablo Javier Piacente / T21
  • Descubren una "nueva" variedad de coronavirus en murciélagos sudamericanos 21 marzo, 2025
    Identificado en el estado de Ceará, en Brasil, un nuevo coronavirus comparte similitudes con el virus responsable del síndrome respiratorio de Medio Oriente: durante 2025, una serie de experimentos determinarán su potencial para infectar a los humanos.
    Redacción T21