Tendencias21

Un sistema aprovecha la energía del caminar para cargar el smartphone

Ingenieros de la Universidad de Wisconsin-Madison (EE.UU.) han diseñado un sistema de captación y almacenamiento de carga que aprovecha la energía del andar humano, y que se puede integrar en el calzado. Ya capta unos 10 vatios por zapato, cuando un smartphone requiere menos de 2.

Un sistema aprovecha la energía del caminar para cargar el smartphone

Una innovadora tecnología de captura y almacenamiento de energía en los zapatos desarrollada por ingenieros mecánicos de la Universidad de Wisconsin-Madison (EE.UU.) podría reducir nuestra dependencia de las baterías en los dispositivos móviles, garantizando la capacidad para cargar para nuestros dispositivos sin importar donde estamos.

En un artículo publicado en la revista Scientific Reports, el profesor Tom Krupenkin y el científico J. Ashley Taylor describen una tecnología de recolección de energía que está particularmente bien adaptada para la captura de la energía del movimiento humano, y utilizarla para cargar dispositivos electrónicos móviles.

La tecnología podría permitir que un colector de energía integrado en el calzado capturara la energía producida por los humanos al caminar y la almacenara para su uso posterior.

Los zapatos generadores de energía, explica la información de la universidad, podrían ser especialmente útiles para los militares, dado que los soldados cargan pesadas baterías para alimentar sus radios, unidades de GPS y gafas de visión nocturna. El avance podría proporcionar una fuente de energía para las personas en zonas remotas y en los países en desarrollo que carecen de las redes eléctricas adecuadas.

«El caminar humano lleva una gran cantidad de energía,» dice Krupenkin. «Los cálculos teóricos muestran que se pueden producir hasta 10 vatios por zapato, y que la energía simplemente se desperdicia en forma de calor. Un total de 20 vatios no es una cosa pequeña, especialmente en comparación con las necesidades de alimentación de la mayoría de los dispositivos móviles modernos».

Krupenkin dice que aprovechar sólo una pequeña cantidad de esa energía es suficiente para abastecer a una amplia gama de dispositivos móviles, como teléfonos inteligentes, tabletas, ordenadores portátiles y linternas. Por ejemplo, un teléfono inteligente típico requiere menos de dos vatios.

Sin embargo, los enfoques tradicionales al aprovechamiento de la energía y su conversión no funcionan bien para los desplazamientos relativamente pequeños y grandes fuerzas de pisadas, según los investigadores.

«Así que hemos estado desarrollando nuevos métodos para convertir directamente el movimiento mecánico en energía eléctrica, que son apropiados para este tipo de aplicación», dice Krupenkin.

Nueva tecnología

La nueva tecnología de captación de energía de los investigadores se aprovecha de la «electrohumectación inversa», un fenómeno en el que Krupenkin y Taylor fueron pioneros en 2011. Con este enfoque, a medida que un líquido conductor interactúa con una superficie revestida de una nanopelícula, la energía mecánica se convierte directamente en energía eléctrica.

El método de la electrohumectación inversa puede generar energía utilizable, pero requiere una fuente de energía con una frecuencia razonablemente alta, tal como una fuente mecánica que está vibrando o girando rápidamente.

«Sin embargo, nuestro entorno está lleno de fuentes de energía mecánicas de baja frecuencia, tales como el movimiento humano y de máquinas, y nuestro objetivo es ser capaces de extraer energía de este tipo de fuentes», dice Krupenkin. «Así que revertir la electrohumectación por sí sola no resuelve el problema.»

‘Burbujeo’

Para superar esto, los investigadores desarrollaron lo que ellos llaman el método del «burbujeo», que se describe en su estudio. El método del burbujeo combina la electrohumectación inversa con el crecimiento de una burbuja y su colapso.

El dispositivo de burbujeo de los investigadores -que no contiene partes mecánicas móviles- consiste en dos placas planas separadas por un pequeño hueco lleno de un líquido conductor. La placa inferior está cubierta con diminutos agujeros a través de los cuales el gas a presión forma burbujas. Éstas crecen hasta que son lo suficientemente grandes como para tocar la placa superior, lo que hace que colapsen.

El veloz y repetitivo crecimiento y colapso de las burbujas empuja y tira del fluido conductor, generando la carga eléctrica. «La alta frecuencia que se necesita para la conversión eficiente de la energía no viene de su fuente de energía mecánica, sino que es una propiedad interna de este enfoque de burbujeo», dice Krupenkin.

Los investigadores dicen que su método de burbujeo podría generar densidades de potencia altas -un montón de vatios en relación con el área de la superficie del generador-, y podría usarse con dispositivos de captación de energía más pequeños y ligeros, que se pueden acoplar a una amplia gama de fuentes de energía.

La prueba de concepto del dispositivo de burbujeo genera alrededor de 10 vatios por metro cuadrado en los experimentos preliminares, y las estimaciones teóricas muestran que podría alcanzar hasta 10 kilovatios por metro cuadrado, según Krupenkin.

«El burbujeo es realmente eficaz en la producción de altas densidades de potencia», dice. «Para este tipo de recolección de energía mecánica, el burbujeador promete lograr, con mucho, la más alta densidad de potencia nunca demostrada.»

Krupenkin y Taylor están tratando de asociarse con la industria y comercializar un colector de energía integrado en el calzado a través de su start-up InStep Nanopower.

Su aparato podría alimentar directamente los diferentes dispositivos móviles a través de un cable de carga, o podría ser integrado en una amplia gama de dispositivos electrónicos incorporados al propio zapato, como un punto de acceso Wi-Fi que actuaría como «intermediario» entre los dispositivos móviles y una red inalámbrica.

Eso ahorraría mucha batería del smartphone, para el que «sólo el coste de la energía de transmisión de radio-frecuencia de ida y vuelta entre el teléfono y la torre es una enorme contribución a la fuga total de la batería», dice Krupenkin.

Referencia bibliográfica:

Tsung-Hsing Hsu, Supone Manakasettharn, J. Ashley Taylor, Tom Krupenkin. Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting. Scientific Reports (2015). DOI: 10.1038/srep16537

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Las hormigas invasoras hacen autostop para encontrar un nuevo hogar 28 junio, 2024
    Se sabe que los insectos son especialistas en utilizar todo tipo de formas de transporte para atravesar amplias distancias, pero un nuevo estudio ha revelado que las hormigas también dominan el autostop: estos insectos sociales recogen a toda la familia, incluida su reina, y se suben al primer vehículo que encuentran para emprender un viaje […]
    Pablo Javier Piacente
  • Los recuerdos imborrables se adhieren a algunas neuronas 28 junio, 2024
    Los científicos han descubierto una explicación biológica para los recuerdos a largo plazo, esos que acompañan a una persona prácticamente durante toda la vida. Revelaron que una molécula, KIBRA, sirve como “pegamento” para otras moléculas, consolidando así la formación de la memoria al activar y mantener una etiqueta sináptica persistente, que queda adherida a un […]
    Pablo Javier Piacente
  • Descubren un boquete de seguridad que afecta a todos los dispositivos y conexiones a Internet 28 junio, 2024
    Una vulnerabilidad de seguridad, que afecta a todas las conexiones y dispositivos de Internet, puede eludir firewalls, VPN y otras herramientas de seguridad y permite espiar a cualquier persona, sin necesidad de código malicioso o acceso al dispositivo. No existe una manera fácil de solucionar este problema de seguridad.
    Redacción T21
  • Crean bebés digitales para mejorar la atención sanitaria 27 junio, 2024
    Un equipo de investigadores desarrolló modelos informáticos que simulan los procesos metabólicos únicos de cada bebé: los “gemelos digitales” pueden ayudar a comprender mejor las enfermedades metabólicas raras y otros desafíos que enfrentan los bebés humanos durante los primeros 6 meses de vida, que son críticos para su crecimiento posterior.
    Pablo Javier Piacente
  • La similitud de los vientos espaciales con los de la Tierra 27 junio, 2024
    Los científicos han descubierto corrientes en el espacio que reflejan de manera inquietante los vientos que giran cerca de la superficie de la Tierra, lo que sugiere fuerzas ocultas que los conectan. Este nuevo conocimiento podría proporcionarnos una mejor comprensión de los sistemas ambientales que circulan alrededor del globo y mejorar los pronósticos meteorológicos espaciales […]
    Pablo Javier Piacente
  • Los archivos geológicos anticipan nuestro futuro climático 27 junio, 2024
    Hace 56 millones de años, la erosión del suelo se cuadruplicó en el planeta debido a las fuertes lluvias y las inundaciones de los ríos provocadas por un calentamiento global muy similar al que conocemos hoy.
    Eduardo Martínez de la Fe
  • Ya es posible transmitir el tacto a través de Internet 26 junio, 2024
    Un nuevo estándar para la compresión y transmisión del sentido del tacto mediante Internet sienta las bases para la telecirugía, la teleconducción y nuevas experiencias de juego en línea, entre otras aplicaciones. El flamante estándar HCTI (Haptic Codecs for the Tactile Internet) es para el “tacto digital” lo que son JPEG, MP3 y MPEG para […]
    Pablo Javier Piacente
  • Las primeras muestras de la cara oculta de la Luna ya están en la Tierra 26 junio, 2024
    La cápsula de reingreso de la sonda Chang'e-6 de China, que transporta hasta dos kilogramos de materiales extraídos y perforados de la cuenca más antigua de la Luna ubicada en su lado oscuro, aterrizó este martes 25 de junio en la región de Mongolia Interior y fue rápidamente recuperada, según informó la Administración Nacional del […]
    Pablo Javier Piacente
  • La Tierra tendrá dos soles dentro de 1,3 millones de años y durante 60.000 años 26 junio, 2024
    Dentro de 1,3 millones de años, la Tierra tendrá una especie de segundo sol porque la estrella Gliese 710 se acercará a 1,1 años luz de la Tierra y la veríamos del mismo tamaño que Júpiter. Lo malo es que esa alteración cósmica puede provocar un episodio en nuestro planeta como el que acabó con […]
    Eduardo Martínez de la Fe
  • China descubre grafeno natural en la Luna 25 junio, 2024
    Investigadores chinos han descubierto recientemente grafeno natural de escasas capas por primera vez en la Luna, a partir de las muestras traídas a la Tierra por la sonda Chang'e 5. El hallazgo proporciona nuevos conocimientos sobre las actividades geológicas, la historia evolutiva y las características ambientales de la Luna.
    Pablo Javier Piacente