Tendencias21

En el laberinto de la mente artificial

Fabricación de sinapsis y neuronas, cultivo de células nerviosas en placas de Petri, modelizaciones informáticas del funcionamiento cerebral… Diversas investigaciones tratan de desvelar el complejo puzle del cerebro para reproducirlo artificialmente, pero también para intentar comprender por qué se enferma y deja de funcionar. Sin embargo, cabe imaginar que la complejidad del cerebro entero pueda resultar inabarcable.

En el laberinto de la mente artificial

En el año 2009, los promotores del proyecto Blue Brain (impulsado por IBM  y el Brain Mind Institute de la Escuela Politécnica Federal de Lausanne, y cuyo objetivo es reproducir informáticamente un cerebro humano a todos sus niveles, incluido el molecular) anunciaban que, en una década, estaría listo el cerebro artificial. Falta solo un año para que se alcance la fecha del vaticinio, pero la complejidad del cerebro sigue sin desvelarse.

Entretanto, más allá del terreno de la informática, se van dando otros intentos. El último del que hemos tenido noticia está protagonizado por una ingeniera en biomedicina de la Universidad de Connecticut, llamada Min Tang-Schomer.

Tang-Schomer ha conseguido crear artificialmente un circuito cerebral simple compuesto por un conjunto de neuronas cultivadas en una placa de Petri. Usando unos electrodos, la investigadora hizo llegar señales eléctricas a estas neuronas, y las células nerviosas respondieron. Comenzaron entonces a latir en sincronía, de un modo similar a como lo hacen en el cerebro, explica la Universidad de Connecticut en un comunicado.

Los electrodos nos pueden parecer artificiales, pero lo cierto es que las señales eléctricas forman parte del funcionamiento normal de nuestro cerebro. Por ejemplo, cuando un fotón (partícula que compone la luz) golpea el ojo de un individuo, se genera una señal eléctrica que viaja a través del nervio óptico, y que es traducida por el cerebro como un color determinado (ese es el color que vemos).

Aún no se sabe si las neuronas de Tang-Schomer pueden generar “pensamiento”, pero la investigadora espera que estos sencillos circuitos conduzcan a circuitos más complejos, y con ellos a una mejor comprensión sobre cómo las neuronas se organizan en su medio natural.

Creación de sinapsis artificiales

Otra interesante vía de emulación del cerebro es la de la fabricación de sinapsis artificiales. Una sinapsis (natural) es aquella conexión o intercambio entre células cerebrales que posibilita la transmisión del impulso nervioso.

El proceso de aprendizaje de nuestro cerebro está ligado a estas conexiones: cuanto más estimulada está la sinapsis, más se refuerza la relación entre las neuronas y, en consecuencia, el aprendizaje mejora. 

El pasado mes de enero, un grupo de investigadores del Instituto Nacional de Estándares y Tecnología (NIST, EEUU) anunció la creación de un interruptor superconductor que funciona como una sinapsis biológica.

Este interruptor (bautizado, claro está, como Sinapsis) es capaz de procesar mil millones de veces por segundo, en comparación con una célula cerebral, que se limita a 50 veces por segundo. Además, usa sólo una diezmilésima parte de la energía que consume una sinapsis humana, aprende igual que una neurona real, y puede almacenar recuerdos.

En 2017, además, investigadores del CNRS de Francia lograron crear una sinapsis artificial capaz de aprender, y desarrollaron un modelo físico que explicaba esta capacidad de aprendizaje, lo que abrió la posibilidad de crear una red de sinapsis artificiales y sistemas inteligentes. En aquel caso, la sinapsis artificial consistió en un componente electrónico nanométrico capaz de ajustar su resistencia bajo impulsos eléctricos similares a los de las neuronas. 

También neuronas de laboratorio
 
Por si todo esto fuera poco, el año pasado asistimos a la creación de neuronas artificiales. Por un lado, un equipo internacional creaba la primera nano-neurona capaz de reconocer números pronunciados por diferentes oradores, con una tasa de éxito del 99,6%.  

Por otro lado, investigadores franceses desarrollaron también una neurona artificial que reproducía la actividad de una neurona humana, aunque con un consumo energético 1.000 veces menor.  

Otro importante paso fue el dado en 2015 por científicos de la MicroNano Research Facility (MNRF) de la RMIT University de Australia, con la fabricación de una celda de memoria multiestado electrónica, analógica y a nanoescala, que emulaba la capacidad del cerebro para procesar información y, simultáneamente, almacenarla de múltiples formas.  

Tratando de desvelar la sinergia

Aunque estos avances tecnológicos pueden ayudar al conocimiento del cerebro, el trabajo con neuronas vivas (como el de Tang-Schomer) y la modelización informática del funcionamiento de las neuronas (que lleva a cabo en el proyecto Blue Rain) podrían desvelar claves aún más fundamentales sobre el funcionamiento cerebral. 

A lo largo de nuestras vidas, nuestros cerebros experimentan cambios continuos, como consecuencia de nuestras experiencias. Estos cambios se dan en las conexiones sinápticas (gracias a la llamada “plasticidad sináptica”) y resultan claves para el aprendizaje y la memoria

Sin embargo, aún se sabe poco acerca de la coordinación interneuronal y de su evolución. La observación de la coordinación de neuronas vivas o las simulaciones a gran escala del proyecto Blue Brain (la más reciente, en un microcircuito neocortical formado por 200,000 neuronas y 260 millones de sinapsis), podrían arrojar luz sobre esos principios funcionales sinérgicos que dan forma a la plasticidad en circuitos cerebrales reales. 

Potenciales aplicaciones 

Por ahora, las posibles aplicaciones de los avances presentados serían las siguientes: las sinapsis artificiales podrían permitir fabricar ordenadores que imiten al cerebro. Las neuronas artificiales servirían, por su parte, para ser conectadas con otras –a través de sinapsis artificiales- y avanzar con ellas en el desarrollo de una Inteligencia Artificial más cercana a la natural.
 
Según algunos expertos, una de las razones por las que las máquinas no pueden tener una consciencia es su incapacidad para procesar suficientes datos. Por ejemplo, aunque las cámaras de un robot puedan capturar más información sobre una escena que el ojo humano, dicho robot fallará al intentar adaptar su comportamiento a lo que ve o al buscar soluciones “creativas” frente a lo que se encuentre. Conocer el secreto de la coordinación o sinergia neuronal quizá, algún día, pueda llevar a incorporarlo a la Inteligencia Artificial para tal fin.
 
Otra aplicación importante que tendrían tanto los estudios en la línea del de Min Tang-Schomer como el del proyecto Blue Brain y los demás sería que podrían ayudar a comprender el origen de ciertas enfermedades cerebrales, como los trastornos neurodegenerativos.

Pero todo parece que llevará más tiempo del previsto por los impulsores de Blue Brain. Si, asomada a su limitado conjunto de neuronas de cultivo, Tang-Schomer señala que este es “como el cosmos”, cabe imaginar que la complejidad del cerebro entero pueda resultar inabarcable. 

Referencias bibliográficas:

Min D.Tang-Schomer. 3D axon growth by exogenous electrical stimulus and soluble factors. Brain Research (2018). DOI: 10.1016/j.brainres.2017.10.032.

Markram H., et al. Reconstruction and Simulation of Neocortical Microcircuitry. Cell (2015). DOI: 10.1016/j.cell.2015.09.029.

 

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Oleada cósmica: cinco asteroides rozan la Tierra en solo cuatro días 3 junio, 2025
    Cinco rocas espaciales pasarán a millones de kilómetros de nuestro planeta en apenas cuatro días, con el 4 de junio como jornada clave. No representan peligro, pero ofrecen una oportunidad única para la ciencia.
    Redacción T21
  • Estados Unidos crea una "máquina del tiempo científica", capaz de condensar en días décadas de investigación 3 junio, 2025
    El próximo superordenador Doudna, que Estados Unidos tendrá operativo en 2026, está diseñado para ser el catalizador de una nueva era de descubrimientos, transformando la forma en que abordamos desde los misterios del cosmos hasta las complejidades de la vida misma.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Se revela una estructura oculta al borde del Sol 3 junio, 2025
    La atmósfera exterior del Sol, conocida como corona solar, ha revelado recientemente detalles asombrosos gracias a avances en óptica adaptativa y técnicas de observación de alto contraste. Un equipo internacional de científicos ha logrado capturar las imágenes más nítidas hasta la fecha de la corona solar, mostrando fenómenos como las “gotas de lluvia” solares y […]
    Redacción T21
  • Dormir mal puede estar relacionado con problemas en la audición 2 junio, 2025
    Una investigación realizada en China y otros estudios recientes sugieren que las patologías del sueño, como el insomnio, el trastorno del movimiento periódico de las extremidades y la apnea del sueño podrían estar relacionados con la pérdida auditiva.
    Pablo Javier Piacente / T21
  • Un tatuaje electrónico puede leer los niveles de estrés 2 junio, 2025
    Un nuevo tatuaje electrónico portátil y ultradelgado que se coloca en la frente de forma no invasiva monitorea de manera inalámbrica la actividad cerebral, rastrea la carga cognitiva en tiempo real y potencialmente predice la fatiga mental y el estrés antes que se haga evidente.
    Pablo Javier Piacente / T21
  • ¿El próximo Einstein será un algoritmo? Nace la primera científica artificial que genera conocimiento 2 junio, 2025
    Una inteligencia artificial ha concebido, ejecutado y escrito una investigación original que ha sido aceptada en ACL 2025, uno de los foros científicos más prestigiosos del mundo. Zochi es la primera científica artificial reconocida por la élite.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Crean un "hormigón viviente" que se repara a sí mismo 2 junio, 2025
    Un equipo de investigadores ha desarrollado un tipo de concreto que puede curarse a sí mismo aprovechando el poder del liquen sintético. Mejora notablemente intentos anteriores de producir hormigón "vivo" hecho con bacterias, ya que el nuevo material logra ser completamente autosuficiente.
    Redacción T21
  • El eco cuántico del cerebro: ¿estamos entrelazados con nuestros pensamientos? 2 junio, 2025
    El entrelazamiento cuántico, la "acción fantasmal a distancia" que tanto intrigó a Einstein, podría no ser solo una rareza del microcosmos, sino que tendría un eco medible en los procesos cognitivos inconscientes mediante un aparente fenómeno “supercuántico”.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Un enorme desierto en Asia se está transformando en un vergel gracias al cambio climático 1 junio, 2025
    Los hallazgos de un nuevo estudio muestran que la ecologización del desierto de Thar ha sido impulsada principalmente por más lluvias durante las temporadas de monzones de verano, un aumento del 64% en las precipitaciones en general por el cambio climático y, en segundo lugar, por la infraestructura de riego que lleva el agua subterránea […]
    Pablo Javier Piacente / T21
  • La NASA está observando una enorme y creciente anomalía en el campo magnético de la Tierra 31 mayo, 2025
    La NASA está haciendo un seguimiento detallado de la "abolladura" o "bache" en el campo magnético terrestre descubierta en 1961, que crece rápidamente y podría ser el preludio de una inversión geomagnética: ocurre cuando los polos magnéticos norte y sur intercambian posiciones.
    EDUARDO MARTÍNEZ DE LA FE/T21