Tendencias21

La unión de cuatro puntos mejora la escalabilidad de la computación cuántica

El desarrollo de los puntos cuánticos supuso un gran paso adelante en este tipo de computación. Sin embargo, conseguir una arquitectura escalable, capaz de reaccionar y adaptarse sin perder calidad, sigue siendo asignatura pendiente. Investigadores del centro RIKEN en Japón han demostrado dicha escalabilidad atrapando y controlando cuatro electrones en un solo dispositivo. Paralelamente, científicos del Laboratorio de Investigación Naval de Estados Unidos han creado puntos cuánticos con tamaño y forma idéntica, lo que acabará con las temidas variaciones incontroladas. Por Patricia Pérez.

La unión de cuatro puntos mejora la escalabilidad de la computación cuántica

Los ordenadores cuánticos aspiran a resolver problemas complejos a los que ni siquiera las mayores supercomputadoras del mundo pueden hacer frente, como descifrar códigos de cifrado modernos, realizar ciertas búsquedas en bases de datos o modelar moléculas biológicas y fármacos. Sin embargo, todavía queda mucho por investigar.

Por ejemplo, se ha demostrado que un solo electrón atrapado en una nanoestructura semiconductora puede ser la pieza básica sobre la que armar un ordenador cuántico. Pero antes de que estos equipos puedan ser una realidad, los científicos necesitan desarrollar una arquitectura escalable que permita un control total sobre los electrones individuales en las matrices de cálculo.

En esta línea, un equipo del centro de investigación RIKEN en Japón, en colaboración con investigadores de la Universidad de Purdue en Estados Unidos, han demostrado la escalabilidad de los puntos cuánticos atrapando y controlando cuatro electrones en un solo dispositivo.

Según explica RIKEN en un comunicado, los electrones tienen una propiedad conocida como espín que puede rotar hacia arriba o abajo. Se trata de la misma codificación binaria que se usa en la informática convencional, pero en este caso los electrones también pueden estar vinculados para formar bits cuánticos, o qubits, capaces de tener dos estados al mismo tiempo y mejorar con ello el rendimiento computacional.

Los circuitos de puntos cuánticos son una de las vías prácticas más prometedoras para aprovechar ese potencial. Un punto cuántico crea un campo eléctrico demasiado profundo para que el electrón escape, permitiendo que los electrones individuales se limiten a un espacio de sólo unos pocos nanómetros de diámetro.

Cuatro puntos

Hasta ahora los científicos han creado dispositivos de dos y tres puntos cuánticos, pero un procesador verdadero necesitaría muchos más. El equipo liderado por Matthieu Delbecq ha utilizado un enfoque similar para crear una estructura de cuatro puntos, lo que demuestra la escalabilidad de esta arquitectura.

"El número de electrones manipulados sólo se incrementa por uno con respecto a estructuras anteriores”, explica Delbecq, "pero incluso una pequeña subida como esta aumenta significativamente la complejidad de manipulación del dispositivo".

Cada uno de los puntos del dispositivo creado por el equipo de Delbecq estaba formado por tres electrodos metálicos a nanoescala sobre un sustrato semiconductor. La potencia de este acoplamiento se sintonizó ajustando los voltajes aplicados a los electrodos. Todo ello se logró a temperaturas extremadamente bajas, apenas una fracción por encima del cero absoluto.

El resultado fue un esquema apto tanto para controlar los electrones en los cuatro puntos cuánticos como para medir o leer el estado de espín de los electrones. "El siguiente paso es formar cuatro qubits espín con esta arquitectura y utilizarlos para hacer cálculos reales", añade Delbecq.

Los resultados de este estudio demuestran que la arquitectura de puntos cuánticos tiene potencial suficiente para su ampliación hasta el número de qubits necesarios para desarrollar un ordenador cuántico completamente funcional.

La unión de cuatro puntos mejora la escalabilidad de la computación cuántica

Precisión atómica

Los puntos cuánticos son a menudo considerados como átomos artificiales, ya que, como los reales, sus electrones se limitan a estados cuantificados con energías discretas. Pero la analogía se rompe rápidamente, ya que mientras los átomos reales son idénticos, los puntos cuánticos generalmente comprenden cientos o miles de átomos, con variaciones inevitables en tamaño y forma y, en consecuencia, en sus propiedades y comportamiento.

Ahora, un equipo de físicos del Paul Drude Institut (PDI) de Berlín, Alemania, en colaboración con el NTT Basic Research Laboratories de Japón, y el Laboratorio de Investigación Naval (NRL) de EEUU han conseguido una reproducibilidad perfecta de estos puntos, con tamaño y forma idéntica, lo que abre la puerta a una arquitectura completamente libre de variaciones incontroladas.

Según explica el NRL en un comunicado, la creación de estos puntos de precisión atómica requiere que cada átomo se coloque en un lugar determinado con exactitud y sin margen de error. Para ello, el equipo montaba los puntos átomo por átomo, utilizando un microscopio de efecto túnel (STM), sobre una plantilla que servía de guía con las posiciones exactas de los átomos permitidos. El resultado eran cadenas lineales de entre 6 y 25 átomos de indio.

Al colocar cada átomo siempre en el mismo lugar, el punto cuántico resultante es esencialmente idéntico, sin variación intrínseca en el tamaño, forma o posición. Esto significa que los puntos cuánticos "moléculas", es decir, aquellos que constan de varias cadenas acopladas, reflejarán la misma invariancia.

Steve Erwin, físico del NRL, asegura que esto “simplifica en gran medida la tarea de crear, proteger y controlar estados degenerados en las moléculas de puntos cuánticos”, requisito previo importante para muchas tecnologías.

La reproducibilidad y alta fidelidad que ofrecen estos puntos cuánticos los convierten en excelentes candidatos para el estudio de la física fundamental, enturbiada normalmente por las variaciones fortuitas de tamaño, forma o posición de las cadenas. De cara al futuro, el equipo también anticipa que la eliminación de variaciones incontroladas en la arquitectura de los puntos cuánticos ofrecerá muchos beneficios a una amplia gama de tecnologías.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Dormir mal puede estar relacionado con problemas en la audición 2 junio, 2025
    Una investigación realizada en China y otros estudios recientes sugieren que las patologías del sueño, como el insomnio, el trastorno del movimiento periódico de las extremidades y la apnea del sueño podrían estar relacionados con la pérdida auditiva.
    Pablo Javier Piacente / T21
  • Un tatuaje electrónico puede leer los niveles de estrés 2 junio, 2025
    Un nuevo tatuaje electrónico portátil y ultradelgado que se coloca en la frente de forma no invasiva monitorea de manera inalámbrica la actividad cerebral, rastrea la carga cognitiva en tiempo real y potencialmente predice la fatiga mental y el estrés antes que se haga evidente.
    Pablo Javier Piacente / T21
  • ¿El próximo Einstein será un algoritmo? Nace la primera científica artificial que genera conocimiento 2 junio, 2025
    Una inteligencia artificial ha concebido, ejecutado y escrito una investigación original que ha sido aceptada en ACL 2025, uno de los foros científicos más prestigiosos del mundo. Zochi es la primera científica artificial reconocida por la élite.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Crean un "hormigón viviente" que se repara a sí mismo 2 junio, 2025
    Un equipo de investigadores ha desarrollado un tipo de concreto que puede curarse a sí mismo aprovechando el poder del liquen sintético. Mejora notablemente intentos anteriores de producir hormigón "vivo" hecho con bacterias, ya que el nuevo material logra ser completamente autosuficiente.
    Redacción T21
  • El eco cuántico del cerebro: ¿estamos entrelazados con nuestros pensamientos? 2 junio, 2025
    El entrelazamiento cuántico, la "acción fantasmal a distancia" que tanto intrigó a Einstein, podría no ser solo una rareza del microcosmos, sino que tendría un eco medible en los procesos cognitivos inconscientes mediante un aparente fenómeno “supercuántico”.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Un enorme desierto en Asia se está transformando en un vergel gracias al cambio climático 1 junio, 2025
    Los hallazgos de un nuevo estudio muestran que la ecologización del desierto de Thar ha sido impulsada principalmente por más lluvias durante las temporadas de monzones de verano, un aumento del 64% en las precipitaciones en general por el cambio climático y, en segundo lugar, por la infraestructura de riego que lleva el agua subterránea […]
    Pablo Javier Piacente / T21
  • La NASA está observando una enorme y creciente anomalía en el campo magnético de la Tierra 31 mayo, 2025
    La NASA está haciendo un seguimiento detallado de la "abolladura" o "bache" en el campo magnético terrestre descubierta en 1961, que crece rápidamente y podría ser el preludio de una inversión geomagnética: ocurre cuando los polos magnéticos norte y sur intercambian posiciones.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Los árboles pueden predecir las erupciones volcánicas 30 mayo, 2025
    La NASA, en colaboración con el Instituto Smithsonian, en Estados Unidos, está desarrollando nuevos métodos para anticipar erupciones volcánicas. Cuando el magma asciende a la superficie libera dióxido de carbono, y los árboles cercanos que absorben ese gas se vuelven más verdes y frondosos. Satélites como Landsat 8 vigilan la vegetación en zonas volcánicas, captando […]
    Pablo Javier Piacente / T21
  • Los delfines se ponen nombres "en clave" 30 mayo, 2025
    Un nuevo estudio ha identificado que los delfines no solo se dan nombres para reconocerse, sino que además estas denominaciones podrían esconder información secreta o "en clave", que estaría ligada a los sistemas sociales que sustentan el equilibrio de sus comunidades.
    Pablo Javier Piacente / T21
  • Sorprenden a una “estrella araña” devorando a su compañera 30 mayo, 2025
    Una colaboración internacional de astrónomos ha identificado un extraño sistema estelar en el que un púlsar conocido como “estrella araña” devora material de su estrella compañera, en un hallazgo que representa un eslabón perdido en la evolución de sistemas binarios compactos. 
    Redacción T21