Desde que teóricos como Richard Feynmann, del California Institute of Technology, en Pasadena, Paul Benioff, de Argonne National Laboratory, en Illinois, David Deutsch, de la Universidad de Oxford, en Inglaterra, y Charles Bennett, del T.J. Watson Research Center de IBM en Yorktown Heights (Nueva York), propusieron por primera vez el concepto de las computadoras cuánticas en las décadas de 1970 y 1980, los investigadores de todo el mundo han vivido fascinados ante la posibilidad de construir ordenadores capaces de trabajar a nivel cuántico, es decir con “piezas” del tamaño de átomos o electrones.
El fuego se avivó cuando en 1994 Peter Shor, de AT and T Research, describió un algoritmo cuántico diseñado para factorizar números grandes y exponencialmente más rápido que las computadoras convencionales, tanto, que podría birlar la seguridad de muchos códigos encriptados de las administraciones públicas. Sólo cuatros años después, presentó la primera computadora cuántica de 1 qubit en la Universidad de California en Berkeley. Desde entonces, varios grupos de trabajo repartidos por todos los rincones del planeta han anunciado importantes progresos en el campo de la computación cuántica.
El último lo que acaba de publicar la revista Physical Review Letters. Según un comunicado recogido por Science Daily, un equipo de investigación del Imperial College de Londres y de la Universidad de Queensland en Brisbane (Australia) ha descubierto el modo de resolver un tipo de problema que provoca que los qubits se pierdan totalmente en un equipo.
La computación cuántica se basa en el uso de qubits (del inglés quantum bits) en lugar de bits, lo que da lugar a nuevas puertas lógicas o circuitos que hacen posibles nuevos algoritmos. En un ordenador tradicional la información se guarda y procesa en bits, que pueden valer 1 o 0. Sin embargo, en un ordenador cuántico la información se guarda y se procesa en qubits Un qubit es un bit que se encuentra en una superposición de estados, de forma que, simplificando, puede valer 1 y 0 a la vez. Así, al poder tener múltiples estados simultáneamente en un instante determinado, se reduce el tiempo de ejecución de algunos algoritmos de miles de años a segundos.
La diferencia en el comportamiento de los materiales en la vida real y en una escala tan pequeña juega a favor de la computación cuántica, como afirma el principal autor del estudio, Sean Barrett, del departamento de Física del Imperial College de Londres: “Los ordenadores cuánticos pueden aprovechar esta rareza para realizar cálculos de gran alcance que podrían ser diseñados para romper el cifrado de códigos de clave pública o simular complejos sistemas de manera mucho más rápida que las computadoras convencionales”.
Con componentes defectuosos y sin ellos
Hasta ahora se pensaba que los ordenadores cuánticos eran muy frágiles a los errores, de ahí las dificultades para construir equipos realmente útiles. Sin embargo, el nuevo hallazgo del grupo de investigación demuestra que pueden funcionar correctamente con componentes defectuosos e, incluso, tolerar una ausencia notable de elementos que se tenían por imprescindibles.
Barrett y su colega, el australiano Thomas Stace, han encontrado una manera eficaz de solucionar un tipo de error por el que los qubits se pierden en el equipo por completo. Para ello utilizaron un sistema de corrección de errores de código que examina el contexto proporcionado por los qubits restantes para descifrar la información que falta adecuadamente. Para entenderlo, Barret lo compara con un ejemplo de la vida cotidiana: «Así como a menudo se puede adivinar una palabra cuando hay un par de letras que faltan, o se puede obtener la esencia de una conversación en una línea de teléfono mal conectada, nosotros utilizamos esta idea en nuestro diseño de una computadora cuántica».
Con su investigación los científicos descubrieron que los ordenadores cuánticos tienen un umbral mucho más alto de tolerancia a los errores de lo que siempre se había imaginado. Y es que se puede perder hasta una cuarta parte de los qubits sin que el equipo deje de funcionar correctamente. Pero de momento esto es solo un hallazgo basado en cálculos teóricos.
El siguiente paso es demostrar estas ideas en el laboratorio. Los científicos tendrán que encontrar una manera de ampliar los equipos a un número suficientemente grande de qubits para que el experimento sea viable, porque hoy por hoy, los ordenadores cuánticos más grandes que los científicos han construido se limitan a dos o tres qubits, según reconoce el propio Barrett que, sin embargo, sí confía en un futuro prometedor para la computación cuántica: «Todavía estamos un poco lejos de conocer el verdadero potencial de un ordenador cuántico. En la actualidad son buenos en tareas particulares pero no tenemos ni idea de lo que estos sistemas podrán hacer en el futuro. No tienen por qué ser necesariamente mejores para todo, pero sí pueden resultar más eficaces para cosas muy específicas que ahora mismo nos parecen imposibles».
Hacer un comentario