Tendencias21
Unas cuantas docenas de fotones bastan para hacer cálculos imposibles

Unas cuantas docenas de fotones bastan para hacer cálculos imposibles

Grupos de investigación de diversas universidades internacionales han anunciado avances en computación cuántica basándose en la propuesta teórica planteada hace dos años por científicos del MIT. Se trata de un experimento óptico que aprovecha las curiosas leyes de la mecánica cuántica para realizar un cálculo imposible en ordenadores convencionales. A través del prototipo, denominado Boson Sampling, los investigadores han comprobado que basta con unas cuantas docenas de fotones para superar a cualquiera de los superordenadores actuales. Por Patricia Pérez.

Unas cuantas docenas de fotones bastan para hacer cálculos imposibles

Son ya muchos los años en los que se habla de la computación cuántica como la panacea para solucionar algunos de los problemas difíciles o imposibles de resolver por la informática clásica. Sin embargo, aún se desconoce si este tipo de equipo futurista sería el único medio para dar solución a estos inconvenientes, o si los convencionales podrían hacerlo casi tan rápidamente.

De lo que no cabe duda es que la tecnología cuántica promete una considerable aceleración en el procesamiento de la información con respecto a los ordenadores actuales más rápidos. Ahora, cuatro grupos de investigación de diversas universidades de todo el mundo han anunciado importantes avances en computación cuántica a partir de la propuesta planteada hace dos años por científicos del Instituto Tecnológico de Massachusetts (MIT) en Estados Unidos.

El profesor asociado de Ingeniería Eléctrica y Ciencias de la Computación, Scott Aaronson, y su alumno Alex Arkhipov, propusieron un experimento que implicaba generar fotones individuales –partículas de luz- y sincronizar su paso a través de un laberinto de componentes ópticos para llegar a una batería de detectores de fotones al mismo tiempo.

Aunque se trataba de un planteamiento teórico, eran conscientes de la dificultad para ponerlo en práctica, aunque siempre sería más fácil que diseñar un ordenador cuántico completamente funcional. Y así ha sido. Prueba de ello son las distintas investigaciones emprendidas desde la Universidad de Queensland, Viena, Oxford y la Universidad Politécnica de Milán a partir de su propuesta. De momento tan sólo las dos primeras han sido publicadas.

A pesar de no ceñirse estrictamente a la formulación original, estos experimentos aportan la evidencia de que los ordenadores cuánticos poseen una ventaja exponencial frente a los convencionales. Si bien todavía es un interrogante si superarán a los superordenadores, queda demostrado que ciertos elementos cuánticos son más adecuados que otros para determinadas tareas computacionales.

En Viena

La computación cuántica funciona mediante la manipulación de elementos cuánticos como los fotones, electrones o átomos individuales. La gran ventaja de los fotones –un tipo particular de bosones- radica en su gran movilidad, cualidad que ha explotado un equipo de científicos de la Facultad de Física de la Universidad de Viena para desarrollar el denominado Boson Sampling (traducido en español como Muestreo bosónico).

Según explica la universidad en un comunicado, en este prototipo los fotones se insertan en una compleja red óptica donde podrían propagarse por diferentes caminos. “De acuerdo con las leyes de la física cuántica, los fotones parecen tomar varios caminos a la vez, lo que se conoce como superposición”, explica el líder del grupo, Philip Walther. Lo sorprendente es que se puede registrar el resultado del cálculo fácilmente, contabilizando cuántos fotones salen por cada camino de la red.

Así, mientras un ordenador clásico requeriría una descripción exacta de la red óptica para calcular la propagación de los fotones, ni siquiera en una simulación con unas docenas de fotones y un circuito con apenas un centenar de entradas y salidas, esta ambiciosa tarea está al alcance de Boson Sampling.

Para verificar el funcionamiento del prototipo es fundamental comparar sus resultados con las predicciones de la física cuántica, prueba que, irónicamente, sólo se puede realizar en un ordenador clásico. “Afortunadamente, estos equipos siguen siendo capaces de conseguirlo con sistemas suficientemente pequeños”, señala el autor principal de la publicación, Max Tillmann.

Unas cuantas docenas de fotones bastan para hacer cálculos imposibles

En Australia

En un artículo publicado en la revista Science, científicos de la Universidad de Queensland (UQ) en Australia describen los primeros pasos experimentales en computación cuántica recurriendo también al prototipo Boson Sampling.

Al igual que sus homólogos vieneses, inciden en la dificultad de predecir los resultados utilizando un ordenador convencional, sobre todo cuando entran en juego dispositivos grandes y muchos fotones, aunque las mediciones sigan siendo igualmente fáciles de ejecutar.

Según un comunicado de la UQ, el líder del equipo experimental, Andrew White, tenía sus dudas sobre si podría aplicarse a la práctica el planteamiento teórico de los científicos del MIT. “No sabíamos realmente si funcionaría en laboratorio, al enfrentarse a los efectos del mundo real, como circuitos con pérdidas, o fuentes y detectores de fotones individuales imperfectos”.

Sin embargo, al confirmar que BosonSampling se comporta como se esperaba, se allana el camino para pruebas más ambiciosas. La predicción de estos investigadores es que con sólo unas cuantas docenas de fotones se puede superar cualquiera de los superordenadores actuales.

Precisamente uno de los coautores de este experimento es el profesor Aaronson del MIT, quien admite estar “muy emocionado de ver cómo se han demostrado las primeras pruebas con BosonSampling, aunque sólo sea con 3 fotones, en lugar de los 30 o así que se requieren para superar a un ordenador clásico”. “No esperaba que esto sucediera tan rápido”, asegura.

A pesar del éxito de sus prototipos, tanto los científicos de Viena como de Australia coinciden en que el planteamiento literal de Aaronson y Arkhipov puede ser bastante difícil de plasmar, por lo que de momento consideran sus investigaciones como pasos intermedios hacia la construcción de la auténtica computadora cuántica.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Crean neuronas artificiales que se organizan solas 31 marzo, 2025
    Un equipo de científicos ha desarrollado nuevas neuronas artificiales que aprenden de forma independiente y replican con mayor eficacia los modelos biológicos: esta red de autoaprendizaje de neuronas infomórficas podría ser vital en nuevos desarrollos en el campo de la IA.
    Redacción T21
  • La velocidad del caos: lo que ocurre a Mach 16 podría cambiar la ingeniería aeroespacial 31 marzo, 2025
    Un equipo de científicos ha descubierto que, a velocidades extremas como Mach 16, el aire que rodea a las naves espaciales y aviones hipersónicos se vuelve impredecible. Este hallazgo promete revolucionar nuestros cielos y permitirnos alcanzar nuevas fronteras.
    Redacción T21
  • La NASA está observando una enorme y creciente anomalía en el campo magnético de la Tierra 30 marzo, 2025
    La NASA está haciendo un seguimiento detallado de la "abolladura" o "bache" en el campo magnético terrestre descubierta en 1961, que crece rápidamente y podría ser el preludio de una inversión geomagnética: ocurre cuando los polos magnéticos norte y sur intercambian posiciones.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Crean un atlas completo de tipos y ubicaciones de células en el cerebro de un mamífero 30 marzo, 2025
    Un grupo de investigadores ha utilizado la transcriptómica espacial, una tecnología genética recientemente desarrollada, para mapear las ubicaciones y las características de miles de tipos de células en todo el cerebro de un ratón. El aspecto clave es que lograron revelar no solo la actividad genética de células individuales, sino también su ubicación dentro de […]
    Pablo Javier Piacente
  • Un microscopio inteligente descubre cómo funciona el cerebro de los modelos de lenguaje artificial 29 marzo, 2025
    Un microscopio inteligente ha realizado un escáner del cerebro de la IA avanzada y descubierto que posee un "lenguaje universal de pensamiento" que le permite razonamientos consistentes, aunque todavía puede generar explicaciones erróneas sobre sus representaciones abstractas.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Una buena "limpieza" de residuos cerebrales podría mejorar la memoria 28 marzo, 2025
    Un estudio realizado en roedores comprueba que aunque los procesos de limpieza esenciales que nuestros cerebros necesitan para seguir funcionando comienzan a descomponerse y fallar a medida que envejecemos, aumentar los ciclos de eliminación de desechos cerebrales incrementaría dramáticamente los efectos benéficos sobre la memoria.
    Pablo Javier Piacente / T21
  • China tiene 100 árboles por habitante: drones con láser logran el mapeo más preciso hasta hoy 28 marzo, 2025
    Un equipo de científicos ha logrado determinar que China alberga aproximadamente 142.600 millones de árboles, lo que equivale a alrededor de 100 árboles por habitante. Este logro se alcanzó mediante el uso de drones equipados con tecnología láser, específicamente la variedad conocida como LiDAR (Light Detection and Ranging), que permite mapear y contar árboles con […]
    Pablo Javier Piacente / T21
  • Este es el nuevo fármaco que vuelve la sangre letal para los mosquitos 28 marzo, 2025
    La malaria y otras patologías transmitidas por algunas especies de mosquitos podrían controlarse con mayor eficacia gracias a un fármaco empleado habitualmente para tratar enfermedades del metabolismo. Es más eficiente, económico y ecológico que las alternativas actuales.
    Redacción T21
  • La Inteligencia Artificial dispara el tamaño del corazón digital del mundo 28 marzo, 2025
    El corazón de la revolución digital del mundo late principalmente en Estados Unidos, seguido a distancia por China y Europa. Amazon, Microsoft y Google representan el 59% de la capacidad mundial de centros de datos de hiperescala, que se han duplicado en los últimos cinco años impulsados por la IA.
    EDUARDO MARTÍNEZ DE LA FE/T21
  • Los psicópatas sienten menos dolor, por eso lo provocan en otros 27 marzo, 2025
    Una nueva investigación muestra que los psicópatas tienen una relación compleja con el dolor, que en parte puede ser responsable de su falta de empatía: al sentir menos dolor, sus límites para generarlo parecen borrarse. Aunque el dolor se registra a nivel cerebral, es procesado de forma diferente por los psicópatas.
    Pablo Javier Piacente / T21