Tendencias21

El movimiento grupal coordinado no necesitaría de cerebros individuales

De las estructuras disipativas al campo de fútbol. Un estudio realizado en EEUU intenta determinar cómo se produce el movimiento coordinado de los futbolistas en pleno juego, a partir del conocimiento actual sobre la coordinación de elementos como las moléculas. El análisis lleva a reflexionar sobre la diferencia (y el parecido) entre lo vivo y lo no vivo, y sobre una posible consciencia grupal.

El movimiento grupal coordinado no necesitaría de cerebros individuales

 ¿Cómo se produce el movimiento coordinado de los grupos humanos, por ejemplo en un campo de fútbol? Esta cuestión puede resultar importante para ayudar a los jugadores a moverse mejor y más rápido, y así ganar más partidos. Pero, además, podría tener implicaciones interesantes para la comprensión de los comportamientos colectivos y de la consciencia grupal.

Para tratar de arrojar luz sobre el tema, se han unido el psicólogo James Dixon, de la Universidad de Connecticut (UCONN), en EEUU; Maurici López-Felip, un estudiante graduado de dicha Universidad que antes era jugador de la Selección Catalana de Fútbol; el químico Jim Rusling (especialista en productos químicos cuyas interacciones emergen por virtud de procesos no lineales), también de la UCONN, y  el físico de la Universidad Wake Forest, Dilip Kondepudi. 
 
Todos ellos están analizando datos de jugadores del Fútbol Club Barcelona, con los que pretenden desarrollar un modelo de movimiento colectivo que incluya el agrupamiento y otros comportamientos posibles, publica la UCONN en un comunicado. La iniciativa surgió del departamento de deportes de equipo del Fútbol Club Barcelona, y ha sido liderada por Paco Seirulo, Joan Vilà y el  propio López-Felip.

Fútbol y estructuras disipativas

Curiosamente, estos científicos presumen que, para que un grupo se mueva de manera coordinada, no se necesitan cerebros. La razón: el hecho constatado de que algunas cosas que ni siquiera están vivas puedan coordinarse de esta misma manera.

Ponen el ejemplo de una sustancia llamada benzoquinona. Cuando pequeñas moléculas de benzoquinona flotan en la superficie de un charco de agua tienden a agruparse, incluso si inicialmente se han esparcido de manera aleatoria por su superficie.

Ilya Prigogine, Nobel de Química 1977, describió este fenómeno como “estructuras disipativas”, y lo definió como aquellas estructuras coherentes, autoorganizadas a partir de sistemas alejados del equilibrio.  

Prigogine (que fue profesor de Dilip Kondepudi) ha ilustrado a menudo este concepto con la “inestabilidad de Bernard”: cuando en una cocina se calienta una olla de agua, el agua del fondo tiende a subir (porque se vuelve más densa) mientras que, al mismo tiempo, el agua más fría baja.

Así se producen flujos en lucha pero, cuando la velocidad de calentamiento sigue aumentando, el sistema alcanza un punto crítico en el que pasa del desorden al orden. Entonces, el movimiento del líquido se convierte en una serie de corrientes estables de convección, que producen un enrejado ordenado de corrientes hexagonales. De repente, millones y millones de moléculas se mueven coherentemente en lugar de moverse de un modo fortuito.

Una explicación energética

En el mundo vivo también hay numerosos ejemplos de estructuras disipativas (lo que supondría un punto en común entre las estructuras dinámicas inanimadas y la vida misma): por ejemplo, tenemos las termitas que corren por el suelo, cada una llevando una partícula de tierra, en apariencia actuando de manera aleatoria hasta que, en un determinado punto crítico, sus movimientos se vuelven cooperativos. Fenómenos similares se han constatado en las células.

Al parecer, la clave de este comportamiento estaría en que promueve una reducción del gasto de energía de los sistemas, vivos  o no. De hecho, Dixon y su equipo han demostrado que, cuando las partículas de benzoquinona disueltas se agrupan, disipan la energía de manera más eficiente.  

¿Qué tiene esto que ver con los cerebros? Pues que, dado que los seres humanos y otros seres vivos también son, esencialmente, sistemas de disipación de energía, estos comportamientos colectivos espontáneos ayudarían a reducir el gasto de energía del cerebro. Y ya sabemos que el cerebro hace lo que sea para ahorrar energía, por eso se pasa el día olvidando la información que considera innecesaria (como donde hemos dejado las llaves). “La evolución no quiere que tensemos nuestro cerebro, ni los entrenadores de fútbol tampoco”, afirman los investigadores de la UCONN.

Inteligencia colectiva y sensibilidad social 

¿Cabría deducir, a partir de todo lo dicho, algún tipo de inteligencia o de consciencia colectivas inherentes a los grupos –vivos o no–? 

Ya se había logrado demostrar que sí existe la inteligencia colectiva o grupal (de humanos), no en los movimientos  espontáneos y coordinados de los que hablamos, sino cuando realizamos tareas en equipo. El científico del MIT Thomas W. Malone y su equipo llevan años estudiando este tema.

En uno de sus estudios, en el que se midió el rendimiento de equipos personas, se constató que los grupos humanos más inteligentes eran aquellos que desplegaban un tipo de dinámica o funcionamiento interno basado en la flexibilidad para asignar ocupaciones. De esta manera,  todos los miembros del equipo podían aplicar mejor sus habilidades a cualquier desafío presentado.  

A partir de estos resultados, Malone y sus colaboradores concluyeron que la inteligencia colectiva aplicada a tareas sí necesita de cerebros individuales, aunque con una característica específica: un alto nivel de “sensibilidad social”. Es decir, que para que la inteligencia del grupo se despliegue cuando se hace alguna tarea colectiva, sus miembros deben tener cerebros flexibles y competentes en habilidades sociales como la disposición a cooperar, la capacidad de escuchar y de responder en consecuencia, la capacidad de adaptación, etc.
 
Física para medir la inteligencia colectiva 

Pero, ¿qué pasa con la inteligencia colectiva en los movimientos coordinados espontáneos? Según nos explica Maurici López-Felip, “normalmente, en las ciencias cognitivas más ortodoxas se ha creído que el cerebro es el que dota de inteligencia al ser humano y que, cuando el ser humano interactúa con otros (por ejemplo, en el fútbol) para lograr un objetivo común, es la suma de cerebros lo que garantiza esa inteligencia colectiva”.
 
En cambio, desde la llamada “física ecológica” -disciplina iniciada en 1979 por James J. Gibson con su libro The Ecological Approach to Visual Perception y en la que se enmarca el estudio de la UCONN- se ha intentado explicar el comportamiento de los seres vivos a partir de “todas aquellas relaciones físicas entre estos y su entorno”, añade López-Felip.

La inteligencia de un organismo, desde el enfoque de la física ecológica, es por tanto su capacidad para exhibir un comportamiento coordinado con su entorno de forma exitosa, autorregulada, a partir de la percepción y la acción (percibo para actuar y actúo para percibir). “Cuando se toma este enfoque, la inteligencia colectiva deja de tener este carácter abstracto y se puede empezar a  explicar en términos de la física”, concluye el investigador.  

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • La acidez cerebral podría estar relacionada con múltiples trastornos neurológicos 11 abril, 2024
    Un estudio en animales a gran escala vincula los cambios en el pH del cerebro con problemas cognitivos de amplio alcance, ligados a patologías como el autismo o el Alzheimer, entre otras. Los científicos creen que los problemas metabólicos en el cerebro podrían estar directamente relacionados con una variedad de trastornos neuropsiquiátricos y neurodegenerativos.
    Pablo Javier Piacente
  • Cultivan organoides cerebrales con conexiones neuronales similares a las de un cerebro real 11 abril, 2024
    Un equipo internacional de investigadores ha desarrollado una técnica para conectar tejidos cultivados en laboratorio que imitan al cerebro humano de una manera que se asemeja a los circuitos neuronales del cerebro real. El "sistema" de mini cerebros interconectados podría revolucionar nuestra comprensión de las funciones cerebrales.
    Pablo Javier Piacente
  • Los Estados se exponen a condenas judiciales por inacción climática 11 abril, 2024
    Suiza es el primer Estado condenado judicialmente por no resolver el desafío climático y violar los derechos humanos de las personas mayores. Hace un año, 16 niños y jóvenes obtuvieron una sentencia condenatoria contra el Estado de Montana por destruir con sus leyes el medioambiente. Cualquier Estado puede ser denunciado si no preserva el ambiente en […]
    Eduardo Martínez de la Fe
  • Detectan extraños pulsos de radio procedentes de un magnetar que desconciertan a los científicos 10 abril, 2024
    Los astrónomos han detectado señales de radio inusuales procedentes de XTE J1810-197, un radiomagnetar o estrella de neutrones ultramagnética situada a 8.100 años luz de distancia de la Tierra, en la constelación de Sagitario. Los resultados son inesperados y sin precedentes: a diferencia de las señales de radio que se han detectado en otros magnetares, […]
    Pablo Javier Piacente
  • La IA podría ser el límite para todas las civilizaciones avanzadas en el Universo 10 abril, 2024
    Un nuevo estudio sugiere que el desarrollo de la Inteligencia Artificial (IA) hacia una Superinteligencia Artificial (ASI) podría explicar por qué no hemos detectado aún otras civilizaciones avanzadas en el cosmos, a pesar de la alta probabilidad de su existencia: en vez de supernovas, plagas, guerras nucleares o eventos climáticos extremos que hayan sido un […]
    Pablo Javier Piacente
  • Higgs ha podido dejar abierta la puerta a la Nueva Física 10 abril, 2024
    La muerte de Peter Higgs, que pasará a la historia como el descubridor del bosón que explica cómo se forma la materia, deja un legado en la historia de la física que todavía puede aportar algo más trascendente: la prueba definitiva de una Nueva Física más allá del Modelo Estándar.
    Eduardo Martínez de la Fe
  • Descubren neuronas "zombis" en el cerebro, que serían claves en el proceso de aprendizaje 9 abril, 2024
    Las neuronas "zombis" son unidades vivas pero funcionalmente alteradas, que parecen "dormidas" en determinadas situaciones: los investigadores han revelado que cumplen un papel fundamental en el cerebelo, concretamente en aspectos relativos a la forma en la cual aprendemos.
    Pablo Javier Piacente
  • La Luna se invirtió por completo hace más de 4 mil millones de años 9 abril, 2024
    Hace unos 4.220 millones de años, poco después de que la Luna se formara a partir de un trozo de la Tierra que se desprendió durante una colisión violenta a principios de la historia del Sistema Solar, nuestro satélite se dio vuelta y comenzó así una etapa clave de su desarrollo. Así lo ha comprobado […]
    Pablo Javier Piacente
  • Arte rupestre de hace 2.000 años podría representar música psicodélica 9 abril, 2024
    Aunque la música psicodélica moderna no nació hasta la década de 1960, las influencias psicodélicas se pueden encontrar en el arte rupestre de hace miles de años. Grabados precolombinos en piedra, de 2.000 años de antigüedad, reflejan figuras humanas bailando en estado de trance chamánico.
    Redacción T21
  • Descubren antiguas partículas de polvo espacial provenientes de otro sistema estelar 8 abril, 2024
    Los astrónomos han descubierto una rara partícula de polvo atrapada en un antiguo meteorito extraterrestre, que fue formado por una estrella distinta a nuestro Sol. El polvo se habría originado luego de una supernova: las partículas son como "cápsulas del tiempo celestes" y proporcionan una instantánea de la vida de su estrella madre.
    Pablo Javier Piacente